Farklı Gürültü Değerlerine Sahip Gerilim Düşümü Sinyallerinin Hızlı Fourier Dönüşümü ile Harmonik ve Toplam Harmonik Bozulum Değerlerinin İncelenmesi

Gerilim düşümü sinyali en temel Güç Kalitesi (GK) bozulumu olaylarından biridir. Normal gerilim değerinin 0.1-0.9 p.u. birim değerde (per-unit) düşmesi olarak tanımlanmaktadır. Bu GK bozulumu sinyali sistemdeki hassas cihazların zarar görmesine yol açabilmektedir. Bu yüzden gerilim düşümü sinyalinin detaylı analizinin yapılması gereklidir. Harmonik analizi ve Toplam Harmonik Bozulum (THB) değerleri bu sinyalin belirlenmesi ve detaylı olarak incelenmesi için kullanılır. Bu çalışmada farklı gürültü değerlerine sahip gerilim düşümü sinyalinin harmonik büyüklükleri ve THB değerleri incelenmiştir. Harmonik büyüklükleri ve THB değerlerinin hesaplanması için Hızlı Fourier Dönüşümü (HFD) kullanılmıştır. Elde edilen sonuçlar yüksek gürültü değerlerinin harmonik dağılımlarının değişmesinde ve THB değerinin yükselmesinde oldukça etkili olduğunu göstermiştir.

Investigation of Harmonic and Total Harmonic Distortion Values of Voltage Sag Signals with Different Noise Values by Fast Fourier Transform

The voltage sag signal is one of the most basic Power Quality (PQ) disturbance events. It is defined as a 0.1-0.9 p.u. per-unit decrease in the normal voltage value. This PQ disturbance signal can cause damage to sensitive devices in the system. Therefore, a detailed analysis of the voltage sag signal is necessary. Harmonic analysis and Total Harmonic Distortion (THD) values are used to determine and analyze this signal in detail. In this study, harmonic magnitudes and THD values of the voltage sag signal with different noise values were investigated. Fast Fourier Transform (FFT) was used to calculate harmonic magnitudes and THD values. It is observed that the harmonic distributions and total harmonic distortion values of the signal at different time intervals change with the variation in noise.

___

  • Mishra M. Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review. Int. Trans. Electr. Energy Syst 2019; 29(8): e12008.
  • Akmaz D. Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. International Journal of Innovative Engineering Applications 2022; 6(1): 42-47.
  • Heydt GT, Fjeld PS, Liu CC, Pierce D, Tu L, Hensley G. Applications of the windowed FFT to electric power quality assessment. IEEE Trans. Power Delivery 1999; 14(4): 1411-1416.
  • Samanta IS, Rout PK, Mishra S. An optimal extreme learning-based classification method for power quality events using fractional Fourier transform. Neural Comput. Appl. 2021; 33: 4979-4995.
  • Akmaz D. Stockwell Dönüşümü. ONE-R Özellik Seçme Yöntemi ve Rastgele Orman Algoritması ile Güç Kalitesi Bozulumu Sinyallerinin Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2022; 34(1): 267-276.
  • Sekar K, Kanagarathinam K, Subramanian S, Venugopal E, Udayakumar C. An improved power quality disturbance detection using deep learning approach. Math. Probl. Eng. 2022.
  • Akmaz D. A new signal processing approach/method for classification of power quality disturbances. Digital Signal Process 2022; 130: 103701.
  • Naderian S, Salemnia A. Method for classification of PQ events based on discrete Gabor transform with FIR window and T2FK‐based SVM and its experimental verification. IET Gener. Transm. Distrib 2017; 11(1): 133-141.
  • Akmaz D. Approximate‐derivative‐based signal‐processing method to segment power‐quality disturbances. IET Gener. Transm. Distrib 2020; 14(21): 4835-4846.
  • Abdelsalam AA, Abdelaziz AY, Kamh MZ. A generalized approach for power quality disturbances recognition based on Kalman filter. IEEE Access 2021; 9: 93614-93628.
  • Samanta IS, Rout PK, Mishra S, Swain K, Cherukuri M. Fast TT transform and optimized probabilistic neural network-based power quality event detection and classification. Electr. Eng. 2022; 104(4): 2757-2774.
  • Gao Y, Li Y, Zhu Y, Wu C, Gu D. Power quality disturbance classification under noisy conditions using adaptive wavelet threshold and DBN-ELM hybrid model. Electr. Power Syst. Res. 2022; 204: 107682.
  • Balakrishnan P, Gopinath S. . A new intelligent scheme for power system faults detection and classification: A hybrid technique. Int. J. Numer. Modell. Electron. Networks Devices Fields 2020; 33(5): e2728.
  • Granados-Lieberman D, Romero-Troncoso RJ, Osornio-Rios RA, Garcia-Perez A, Cabal-Yepez E. Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Gener. Transm. Distrib 2011; 5(4): 519-529.
  • Saxena D, Verma K, Singh S. Power quality event classification: an overview and key issues. International journal of engineering, science and technology 2010; 2(3): 186-199.
  • Hubbard SJ, Collins ER. Uses of signal derivatives in analysis voltage sags. In : 2004 11th International Conference on Harmonics and Quality of Power 2004; pp. 531-536.
  • Meena P, Rao KU, Ravishankar D. A modified simple algorithm for detection of voltage sags and swells in practical loads. In: 2009 International Conference on Power Systems 2009; pp. 1-6.
  • Latran MB, Teke A. A novel wavelet transform based voltage sag/swell detection algorithm. Int. J. Electr. Power Energy Syst 2015; 71: 131-139.
  • Bastos AF, Lao KW, Todeschini G, Santoso S. Accurate identification of point-on-wave inception and recovery instants of voltage sags and swells. IEEE Trans. Power Delivery 2018; 34(2): 551-560.
  • Djokić SŽ, Milanović JV, Rowland SM. Advanced voltage sag characterisation II: point on wave. IET Gener. Transm. Distrib 2007; 1(1): 146-154.
  • Henderson RD, Rose PJ. Harmonics: the effects on power quality and transformers. IEEE Trans. Ind. Appl 1994; 30(3): 528-532.
  • Phipps JK, Nelson JP, Sen PK. Power quality and harmonic distortion on distribution systems. IEEE Trans. Ind. Appl 1994; 30(2): 476-484.
  • Subjak JS, Mcquilkin JS. Harmonics-causes, effects, measurements, and analysis: an update. IEEE Trans. Ind. Appl 1990; 26(6): 1034-1042.
  • Kürker F. Doğrusal olmayan yük bulunan tesislerde güç faktörüne toplam harmonik bozulmanin etkisi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2022; 9(16): 219-235.
  • Kürker, F. Performing power quality analysis of different LED lamps. Turkish Journal of Electromechanics and Energy 2022;7(1):32-40.
  • Bozabalı M, Üç Fazlı Sistemlerde Paralel Aktif Güç Filtre Tasarımı ve Simülasyonu, Yüksek Lisans Tezi, Sakarya Üniversitesi. Fen Bilimleri Enstitüsü, Sakarya 2009.