Malign ve Benign Meme Lezyonlarının Ayrımında Kontrastsız Manyetik Rezonans Görüntülemenin Önemi

Amaç: Malign ve benign meme kitlelerin kontrastsız sekanslarda sergiledikleri morfolojik ve kantitatif özelliklerini inceleyerek, kontrastsız sekansların malign ve benign lezyon ayrımında ve malinite tahmininde etkinliklerini araştırmak istedik. Gereç ve Yöntem: Ellibir benign ve 45 malign meme lezyonunun kontrastsız T1 ağırlıklı görüntüleme (T1AG) ile morfolojik, yağ baskılı T1AG, turbo inversion recovery magnitude (TRIM) T2AG ve difüzyon ağırlıklı görüntüleme (DAG) ile de kantitatif özelliklerini retrospektif olarak analiz ettik. Morfolojik özelliklerden lezyonların şekil ve kenar özelliği değerlendirildi. Kantitatif özelliklerden de lezyon/fibroglandüler doku (FGD) intensite oranı ile ADC değerleri ROI aracılığıyla ölçüldü. Malign ve benign lezyonlarda kantitatif değerlerin karşılaştırmasında student-t testi, morfolojik özelliklerin karşılaştırılmasında ise chi-square testi kullanıldı. Bulgular: T1AG’lerde malign ve benign olma durumu ile lezyonun sırasıyla kenar ve şekil özellikleri arasında anlamlı ilişki mevcuttu (p

The Importance of Unenhanced Magnetic Resonance Imaging on Distinction of Malign and Benign Lesions of the Breast

Objective: We aimed to investigate the morphological and quantitative characteristics of malign and benign breast masses in unenhanced sequences, and to determine the effects of unenhanced sequences on benign-malign lesion distinction and malignancy prediction. Material and Method: We retrospectively analyzed the morphological features with unenhanced T1 weighted imaging (T1WI), and quantitative features with fat-suppressed T1WI, Turbo inversion recovery magnitude (TRIM) T2WI and Diffusion weighted imaging (DWI) of 51 benign and 45 malign breast lesions. Morphological characteristics of breast masses including their edges and shapes were evaluated. The lesion / fibroglandular tissue (FGT) intensity ratio and ADC values which are quantitative characteristics were measured by ROI. Between malign and benign lesions, Student-t test was used for comparison of quantitative values, whereas chi-square test was used for comparison of morphological features. Results: There was a significant relationship between malign-benign condition and edge and shape features of lesions on the T1WI respectively (p

___

  • 1. Peters NH, Borel Rinkes IH, Zuithoff NP, et al. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 2008; 246: 116-24.
  • 2. Kuhl CK, Schrading S, Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 2007; 370: 485-92.
  • 3. Lee CH, Dershaw DD, Kopans D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 2010; 7: 18-27.
  • 4. Sardanelli F, Podo F, Santoro F, et al. High Breast Cancer Risk Italian 1 (HIBCRIT-1) Study. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the High Breast Cancer Risk Italian 1 study): final results. Invest Radiol 2011; 46: 94- 105.
  • 5. Nicholas BA, Vricella GJ, Smith M, et al. Contrast- induced nephropathy and nephrogenic systemic fibrosis: minimizing the risk. Can J Urol 2012; 19: 6074-80.
  • 6. Sardanelli F. Evidence-based radiology and its relationship with quality. In: Abujudeh HH, Bruno MA (editors). Quality and Safety in Radiology. New York, NY: Oxford University Press, 2012: 256-90.
  • 7. Trimboli RM, Carbonaro LA, Cartia F, et al. MRI of fat necrosis of the breast: the “black hole” sign at short tau inversion recovery. Eur J Radiol 2012; 81: 573-79.
  • 8. Woodhams R, Ramadan S, Stanwell P, et al. Diffusion- weighted imaging of the breast: principles and clinical applications. Radiographics 2011; 31: 1059-84.
  • 9. Englander SA, Uluğ AM, Brem R, et al. Diffusion imaging of human breast. NMR Biomed 1997; 10: 348–52.
  • 10. Woodhams R, Matsunaga K, Kan S, et al. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42.
  • 11. Baltzer PA, Benndorf M, Dietzel M, et al. Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 2010; 20: 1101-10.
  • 12. Yabuuchi H, Matsuo Y, Sunami S, et al. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging. Eur Radiol 2011; 21: 11-7.
  • 13. Warren RM, Pointon L, Thompson D, et al. Reading protocol for dynamic contrast-enhanced MR images of the breast: sensitivity and specificity analysis. Radiology 2005; 236: 779-88.
  • 14. Trimboli RM, Verardi N, Cartia F, et al. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2- weighted STIR, and diffusion-weighted imaging: a proof of concept study. AJR Am J Roentgenol 2014; 203: 674-81. doi:10.2214/AJR.13.11816.
  • 15. Matsubayashi RN, Imanishi M, Nakagawa S, et al. Breast ultrasound elastography and magnetic resonance imaging of fibrotic changes of breast disease: correlations between elastography findings and pathologic and short Tau inversion recovery imaging results, including the enhancement ratio and apparent diffusion coefficient. J Comput Assist Tomogr 2015; 39: 94-101.
  • 16. Al-Khawari HA, Al-Manfouhi HA, Madda JP, et al. Radiologic features of granulomatous mastitis. Breast J 2011; 17: 645-50.
  • 17. Bydder GM, Young IR. MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 1985; 9: 659-75. 18. Delfaut EM, Beltran J, Johnson G, et al. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999; 19: 373-82
  • 19. Woodhams R, Kakita S, Hata H, et al. Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging comparison with contrast-enhanced MR imaging and pathologic findings. Radiology 2010; 254: 357-66.
  • 20. Satake H, Nishio A, Ikeda M, et al. Predictive value for malignancy of suspicious breast masses of BI-RADS categories 4 and 5 using ultrasound elastography and MR diffusion-weighted imaging. AJR Am J Roentgenol 2011; 196: 202-9. doi: 10.2214/AJR.09.4108.
  • 21. Pereira FP, Martins G, Figueiredo E, et al. Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values. AJR Am J Roentgenol 2009; 193: 1030-5.
  • 22. Marini C, Lacconi C, Giannelli M, et al. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007; 17: 2646-55.
  • 23. Bozkurt Bostan T, Koç G, Sezgin G, et al. Value of apparent diffusion coefficient values in differentiating malignant and benign breast lesions. Balkan Med J 2016; 33: 294-300.
  • 24. Kinoshita T, Yashiro N, Ihara N, et al. Diffusionweighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive duc-tal carcinoma from fibroadenoma. J Comput Assist Tomogr 2002; 26: 1042-6.
Fırat Tıp Dergisi-Cover
  • ISSN: 1300-9818
  • Başlangıç: 2015
  • Yayıncı: Fırat Üniversitesi Tıp Fakültesi