Sınıf Öğretmen Adaylarının Buzun Erimesi, Yoğunluk ve Gazların Sudaki Çözünürlüğü Kavramlarına İlişkin Alternatif Yapılarının Belirlenmesi

Bu çalışmanın amacı, sınıf öğretmen adaylarının “buzun erimesi, yoğunluk ve gazların sudaki çözünürlüğü’’ kavramlarına ilişkin anlama düzeylerini ve alternatif yapılarının belirlenmesidir. Bu amaç doğrultusunda çalışmada durum çalışması yöntemi kullanılmıştır. Veri toplama aracı üç adet açık uçlu sorudan oluşmaktadır. Sorular Fen ve Teknoloji Laboratuvar Uygulamaları dersindeki 90 sınıf öğretmen adayına uygulanmıştır. Öğretmen adaylarının buzun erimesi, yoğunluk ve çözünürlük kavramlarına ilişkin anlama düzeyleri tam anlama, kısmi anlama, bir spesifik alternatif yapı ile kısmî anlama, alternatif yapılar ve cevapsız şeklinde beş kategoride değerlendirilmiştir. Ayrıca buzun erimesi, yoğunluk ve çözünürlük kavramlarına ilişkin alternatif yapılar öğrencilerin ifadelerinden doğrudan alıntılar yapılarak betimlenmiştir. Çalışmanın sonuçlarına göre öğretmen adaylarının genellikle buzun erimesi olayında kütle, hacim ve yoğunluk değişimine ilişkin alternatif yapılara sahip oldukları görülmüştür. Ayrıca gazların sudaki çözünürlüğüne ve sıvıların yoğunluğunun sıcaklıkla değişimine ilişkin az sayıda öğretmen adayının bilimsel olarak doğru cevap verdiği görülmüştür. Öğretmen adaylarının belirtilen kavramlara ilişkin açıklamaları çoğunlukla yetersiz bulunmuş ve bilimsel olmayan çok sayıda ifadenin bulunduğu görülmüştür

Determination of Primary School Teachers' Alternative Frameworks Regarding the Concepts of Melting of Ice, Density and Solubility of Gases in Water

The aim of this study is to determine the pre-service teachers' level of understanding and alternative ideas about the concepts of “melting of ice, density, and solubility of gases in the water”. For this purpose, a case study was used in the study. The data collection tool consists of three open-ended questions. The questions were applied to 90 primary school teachers in Science and Technology Laboratory Practices course. The levels of understanding of primary school teachers regarding the concepts of melting of ice, density, and solubility of gases in the water were examined in five categories as full understanding, partial understanding, partial understanding with a specific alternative framework, alternative frameworks, and no answer. In addition, alternative frameworks related to the concepts of melting of ice, density, and solubility of gases in the water are described by direct quotations from students' expressions. According to the results of the study, it was observed that the primary school teachers had many alternative frameworks about the change of mass, volume, and density of ice in the melting of ice. In addition, it was observed that a small number of the primary school teachers responded correctly and there were many alternative structures regarding the change of solubility of gases and density of liquids with temperature. The primary school teachers' explanations were mostly inadequate and there were many unscientific statements

___

  • Abraham, M.R., Grzybowski, E.B., Renner, J.W. & Marek, E.A. (1992). Understandings and misunderstandings of eight graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
  • Adadan, E. (2012). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079-1105.
  • Adadan, E. (2014). Investigating the influence of pre-service chemistry teachers’ understanding of the particulate nature of matter on their conceptual understanding of solution chemistry. Chemistry Education Research and Practice, 15, 219-238.
  • Akdeniz, A.R., Bektaş, U. & Yiğit, N. (2000). İlköğretim 8. sınıf öğrencilerinin temel fizik kavramlarını anlama düzeyi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 19, 5-14.
  • Amin T.G., Carol. S. & Wiser. M. (2014). Student Conceptions and Conceptual Change: Three Overlapping Phases of Research. To appear in N. Lederman and S. Abell (Eds), Handbook of Research in Science Education, Vol. II. New York: Routledge
  • Artdej, R., Ratanaroutai, T. & Coll, R.K. (2010). Thai grade 11 students' alternative conceptions for acid-base chemistry. Research in Science & Technological Education, 28(2), 167-183.
  • Atwood, R.A. & Atwood, V.A. (1996). Prospective elementary teachers’ conceptions of the causes of seasons. Journal of Research in Science Teaching, 33, 553-563.
  • Ayas, A., Özmen, H. & Çalık, M. (2010). Students' conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8(1), 165-184.
  • Banawi, A., Sopandi, W., Kadarohman, A. & Solehuddin, M. (2019). Prospective primary school teachers’ conception change on states of matter and their changes through Predict- Observe-Explain Strategy. International Journal of Instruction, 12(3), 359-374.
  • Barker V. (1995). A longitudinal study of 16–18-year old’s’ understanding of basic chemical ideas. Doctoral dissertation, Department of Educational Studies, University of York.
  • Bendal, S., Goldberg, F. & Galili, I. (1993). Prospective elementary teachers’ prior knowledge about light. Journal of Research in Science Teaching, 30, 1169-1187.
  • Benson, D.L., Wittrock, C.M. & Baur, M.E. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
  • Blanco, A. & Prieto, T. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: A cross-age study (12 to 18). International Journal of Science Education, 19(3), 303-315.
  • Bodner, M.B. (1991). The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68(5), 385-388.
  • Boz, Y. (2006). Turkish pupils' conceptions of the participate nature of matter. Journal of Science Education and Technology, 15(2), 203-213.
  • Coştu, B., Ayas, A., Açıkkar, E. & Çalık, M. (2007). Çözünürlük konusu ile ilgili kavramlar ne düzeyde anlaşılıyor? Boğaziçi Üniversitesi Eğitim Fakültesi Dergisi, 24(2), 13-28.
  • Çakmak, M., Çakmak, R. & Topal, G. (2018). Öğretmen adaylarının su hakkındaki bilgi düzeyleri ve kavram yanılgıları. Electronic Turkish Studies, 13(27), 385-404.
  • Çalık, M. & Ayas, A. (2005). A comparison of level of understanding of eighth‐grade students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638-667.
  • Çalık, M., Ayas, A. & Ünal, S. (2006). Çözünme kavramıyla ilgili öğrenci kavramalarının tespiti: bir yaşlar arası karşılaştırma çalışması. Gazi Üniversitesi Türk Eğitim Bilimleri Dergisi, 4(3), 309-322.
  • Dori, Y.J. & Hameiri, M. (2003). Multidimensional analysis system for quantitative chemistry problems—Symbol, macro, micro and process aspects. Journal of Research in Science Teaching, 40, 278-302.
  • Driver, R. & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students' conceptual frameworks in science. Journal Studies in Science Education, 10(1), 37-60.
  • Driver, R. & Easley. J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  • Driver, R., Squires, A., Rushworth, P. & Wood-Robinson, V. (1994). Making Sense of Secondary Science: Research into Children’s Ideas (2nd Ed.). London: Routledge.
  • Ebenezer, J.V. & Erickson, G.L. (1996). Chemistry students’ conceptions of solubility: A phenomenograpy. Science Education, 80, 181-201.
  • Gabel, D.L., Hunn, D. & Samuel, K.V. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697.
  • Garnett, P.J, Garnett, P.J. & Hackling, M.W. (1995). students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Journal Studies in Science Education, 25(1), 69-95.
  • Gilbert, J. K. & Zyberstajn, A. (1985). A conceptual framework for science education: The case study of force and movement. European Journal of Science Education, 7, 107-120.
  • Goodwin, A. (2002). Is salt melting when it dissolves in water? Journal of Chemical Education, 79, 393-396.
  • Griffiths, A.K. & Preston, K.R. (1992). Grade-12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.
  • Güneş, T., Taştan Akdağ, F. & Güneş, O. (2016). Lise öğrencilerinin sıvıların kaldırma kuvvetinin öğrenilmesine yönelik hazır bulunuşlukları ve kavram yanılgıları. International Journal of Social Sciences and Education Research, 2 (1), 20-32.
  • Haidar, A.H. (1997). Prospective chemistry teachers’ conceptions of the conservation of matter and related concepts. Journal of Research in Science Teaching, 34, 181-197.
  • Hançer, A.H., Şensoy, Ö. & Yıldırım, H.İ. (2003). İlköğretimde çağdaş fen bilgisi öğretiminin önemi ve nasıl olması gerektiği üzerine bir değerlendirme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 80-88.
  • Hewson, M.G. & Hewson, P.W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
  • Horton, C. (2007). Student alternative conceptions in chemistry. California Journal of Science Education, 7(2), 18-38.
  • Jauhariyah, M.N.R., Suprapto, N., Suliyanah, S., Admoko, S., Setyarsih, W., Harizah, Z. & Zulfa, I. (2018). The students’ misconceptions profile on chapter gas kinetic theory. Journal of Physics: Conference Series, 997(1).
  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
  • Kang, S., Scharmann, L.C., Noh, T. & Koh, H. (2005). The influence of students’ cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27(9), 1037-1058.
  • Karaaslan, E.H. & Ayas. A. (2016). Fen eğitiminde ‘bilimsel açıklama’ ve önemi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(3), 101-120.
  • Kartal, T., Öztürk, N. & Yalvaç, H.G. (2011). Misconceptions of science teacher candidates about heat and temperature. Procedia Social and Behavioral Sciences, 15, 2758–2763.
  • Kesmez, İ. (2010). Fen Öğretimi Laboratuvar Uygulamaları-1. 2. Baskı, Erzurum.
  • Kimmerle, J., Moskaliuk, J., Oeberst, A. & Cress, U. (2015). Learning and collective knowledge construction with social media: A process-oriented perspective. Educational Psychologist, 50(2), 120-137.
  • Kind, V. (2004). Beyond Appearances: Students’ Misconceptions about Basic Chemical Ideas, 2nd Edition, School of Education, Durham University, UK.
  • King, C.J.H. (2010). An analysis of misconceptions in science textbooks: Earth science in England and Wales. International Journal of Science Education, 32(5), 565-601.
  • Kirbulut, Z.D., & Geban, O. (2014). Using three-tier diagnostic test to assess students’ misconceptions of states of matter. Eurasia Journal of Mathematics, Science & Technology Education, 10(5), 509-521.
  • Konur, K. & Ayas, A. (2004). Sınıf öğretmeni adaylarının bazı kimya kavramlarını anlama seviyeleri. VI. Ulusal Fen Bilimleri ve Matematik Eğitim Kongresi, 9–11 Eylül, İstanbul,
  • Koray, Ö., Akyaz, N. & Köksal, M.S. (2007). Lise öğrencilerinin “çözünürlük” konusunda günlük yaşamla ilgili olaylarda gözlenen kavram yanılgıları. Kastamonu Eğitim Dergisi, 15(1), 241-250.
  • Kruger C.J. & Summers M.K. (1989). An investigation of some primary teachers’ understanding of change in materials. The School science review, 71(255), 17-27.
  • Lee, O., Eichinger, D.C., Anderson, C.W., Berkeimer, G.D. & Blakeslee, T.D. (1993). Changing middle school students' conceptions of matter and molecules. Journal of Chemical Education, 67, 248-252.
  • Lemma, A. (2013). A diagnostic assessment of eighth grade students’ and their teachers’ misconceptions about basic chemical concepts. African Journal of Chemical Education, 3(1), 39-59.
  • Lin, H-S., Cheng, H-J. & Lawrenz, F. (2000). The assessment of students and teachers’ understanding of gas laws. Journal of Chemical Education, 77(2), 235-238.
  • Marx R.W., Blumenfeld P.C., Krajcik J.S., Fishman B., Soloway E., Geier, R. & Tal. R.T. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41, 1063–1080.
  • Mayer, K. (2011). Addressing students' misconceptions about gases, mass, and composition. Research: Science and Education, 88(1), 111-115.
  • McMillan, J. H. & Schumacher, S. (2010). Research in Education: Evidence-Based Inquiry. 7th Edition, My Education Lab Series, Pearson, Upper Saddle River, New Jersey.
  • Miles, M.B. & Huberman, A.M. (1994). Qualitative Data Analysis: An Expanded Sourcebook. (2nd Edition). California: SAGE Publications.
  • Mirzalar–Kabapınar, F. & Adik, B. (2005). Ortaöğretim 11. sınıf öğrencilerinin fiziksel değişim ve kimyasal bağ ilişkisini anlama seviyesi. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 38(1), 123-147.
  • Nicoll, G. (2001). A report of undergraduates’ bonding misconception. International Journal of Science Education, 23, 707-730.
  • Novick, S. & Nussbaum, J. (1978). Junior high school pupils' understanding of the particulate nature of matter: An interview study. Science Education, 62, 273-281.
  • Novick, S. & Nussbaum, J. (1981). Pupils' understanding of the particulate nature of matter: A cross‐age study. Science Education, 65(2), 187-196.
  • Osborne R. & Cosgrove M. (1983), Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
  • Osborne, R., Bell, B. & Gilbert, J. (1983) Science teaching and children's views of the world. European Journal of Science Education, 5, 1-14.
  • Özmen, H., Ayas, A. & Coştu, B. (2002). Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi. Kuram ve Uygulamada Eğitim Bilimleri, 2(2), 507-529.
  • Philipp, S.B., Johnson, D.K. & Yezierski, E.J. (2014). Development of a protocol to evaluate the use of representations in secondary chemistry instruction. Chemistry Education: Research and Practice, 15, 777-786.
  • Prieto, A., Blanco, A. & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solutions. International Journal of Science Education, 11, 451-463.
  • Rowell, J.A. & Dawson, C.J. (1977). Teaching about floating and sinking: an attempt to link cognitive psychology with classroom practice. Science Education, 61(2), 245-253.
  • Rusçuklu, P. & Özdilek, Z. (2019). Bütünleştirilmiş anlaşma halkaları ve TGA yönteminin çözünürlüğe etki eden faktörler konusundaki kavramsal anlamaya etkisi. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20, 621-648.
  • Schmidt, H.J. (1997). Students' misconceptions - looking for a pattern. Science Education 81(2), 123-135.
  • Şen, Ş. & Yılmaz, A. (2012). Erime ve çözünmeyle ilgili kavram yanılgılarının ontoloji temelinde incelenmesi. Amasya Üniversitesi Eğitim Fakültesi Dergisi,1(1), 54-72.
  • Stavy, R. (1990). Children’s conception of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247-266.
  • Strauss, S. (1981). Cognitive development in school and out. Cognition, 10(1-3), 295-300.
  • Taber, K.S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20, 597-608.
  • Tamkavas, Ç.H., Kıray, S.A., Koçak, A. & Koçak, N. (2016). Studies conducted on misconceptions about heat and temperature in Turkey between 2005-2015: A content analysis. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 10 (2), 426-446.
  • Valandines, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving. Chemistry Education: Research and Practice in Europe, 1(2), 249-262.
  • van Riesen, S.A.N., Gijlers, H., Anjewierden, A. & de Jong, T. (2018). The influence of prior knowledge on experiment design guidance in a science inquiry context. International Journal of Science Education, 40(11), 1327-1344.
  • Vikström, A. (2014). What makes the difference? Teachers explore what must be taught and what must be learned to understand the particulate character of matter. Science Teacher Education, 25, 709-727.
  • Yağbasan, R. & Gülçiçek, Ç. (2003). Fen öğretiminde kavram yanılgılarının karakteristiklerinin tanımlanması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 102- 119.
  • Yıldırım, A. & Şimşek, H. (2018). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.