Endojen BDNF'ün Kainik Asit Kaynaklı Nöbetler Üzerindeki Etkilerinin İncelenmesi

Beyin kaynaklı nörotrofik faktör (BDNF), merkezi sinir sisteminde plastisitede rol oynayan önemli bir aracıdır. BDNF'nin hızlı sinaptik etkileri nedeniyle, nöronal devrede uyarılabilirliği düzenlediği düşünülmektedir. BDNF ile epileptik aktivite arasında iki yönlü bir ilişki vardır. Nöbet veya kainat uygulamasını takiben BDNF seviyeleri yükselir. Bunun yanında, BDNF uygulaması aşırı uyarılabilirliğe neden olur. BDNF eksikliği, birkaç epilepsi modelinde nöbetleri veya epileptiform aktiviteyi azaltır. Bu çalışmada amacımız, azaltılmış endojen BDNF'nin kainik asit (KA) kaynaklı nöbetler üzerindeki modülatör etkilerini araştırmaktı. Bu amaçla BDNF heterozigot fareler ve bunların yabani tip yavruları karşılaştırıldı. Hayvanlara %0.9’luk tuzlu su çözeltisi veya kainik asit (15 mg/kg) intraperitoneal olarak verildi. Dört grup oluşturuldu: tuzlu su enjekte edilen yabani tip fareler (WT-SA; n=9) ve BDNF heterozigot fareler (HT-SA; n=9), kainik asit enjekte edilen yabani tip (WT-KA, n=10) ve BDNF heterozigot fareler (HT-KA, n=10). Video kayıtlarından 5 dakikalık dönemler için Racine skorları belirlendi. Hipokampal dokuda, sinaptik proteinler sinaptofizin (SYP) ve PSD-95’in yanında inflamatuar belirteçler interlökin-6 (IL-6) ve tümör nekroz faktörü alfa (TNF-α) ölçüldü. Ayrıca oksidatif stres parametreleri değerlendirildi. WT-KA grubunun skoru 20 ve 25. dakikada HT-KA grubuna göre daha yüksekti (p<0.05). MDA düzeyleri kainik gruplarda daha yüksekti (p<0.05). Kainik asit, nöroinflamasyonu ve sinaptik proteinleri önemli ölçüde etkilemedi. Sonuçlarımız, azalmış BDNF'nin geçici olarak nöbete karşı bir direnç oluşturduğunu, ancak normal BDNF düzeylerinin kainik asit modelinde oksidatif strese karşı koruma sağlamadığını gösterdi.

Investigation of The Effects of Endogenous BDNF on Kainic Acid Induced Seizures

Brain derived neurotrophic factor (BDNF), a major mediator of plasticity in the central nervous system. Due to fast synaptic actions of BDNF, it is thought to be a modulator of excitability in neuronal circuitry. There is a two sided relationship between BDNF and epileptic activity. BDNF levels increase following seizure or kainate administration. Additionally, BDNF administration causes hyperexcitability. BDNF deficiency attenuates seizures or epileptiform activity in several epilepsy models. In this study, our aim was to investigate modulatory effects of reduced endogenous BDNF on kainic acid (KA) induced seizures. For this purpose, BDNF heterozygous mice and their wild type littermates were compared. Animals were injected intraperitoneally with either vehicle (0.9% saline) or kainic acid (15 mg/kg). Four groups were formed: vehicle injected wild type (WT-SA; n=9) and BDNF heterozygous mice (HT-SA; n=9), kainic acid injected wild type (WT-KA, n=10) and BDNF heterozygous mice (HT-KA, n=10). Racine scorings were determined for 5 min epochs from the video recordings. In the hippocampal tissue synaptic markers proteins synaptophysin (SYP), post-synaptic density (PSD-95) and inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor Alpha (TNF-α) were measured. Besides, oxidative stress parameters were evaluated. WT-KA group’s score were higher at 20 and 25 min than that of HT-KA group (p<0.05). MDA levels were higher in kainic groups (p<0.05). Kainic acid did not affect neuroinflammation and synaptic proteins significantly. Our results showed that reduced BDNF temporarily posed a resistance against seizure but intact levels of BDNF failed to protect against oxidative stress in kainic acid model.

___

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci. 1997; 17(7): 2295-2313. DOI:10.1523/JNEUROSCI.17-07-02295.1997.
  • Yan Q, Rosenfeld RD, Matheson CR, et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience. 1997; 78(2): 431-448. DOI:10.1016/s0306-4522(96)00613-6.
  • Gottmann K, Mittmann T, Lessmann V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res. 2009; 199(3-4): 203-234. DOI:10.1007/s00221-009-1994-z.
  • Jovanovic JN, Benfenati F, Siow YL, et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A. 1996; 93(8): 3679-3683. DOI:10.1073/pnas.93.8.3679.
  • Suen PC, Wu K, Levine ES, et al. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci U S A. 1997; 94(15): 8191-8195. DOI:10.1073/pnas.94.15.8191.
  • Elmér E, Kokaia Z, Kokaia M, Carnahan J, Nawa H, Lindvall O. Dynamic changes of brain-derived neurotrophic factor protein levels in the rat forebrain after single and recurring kindling-induced seizures. Neuroscience. 1998; 83(2): 351-362. DOI:10.1016/s0306-4522(97)00387-4.
  • Rudge JS, Mather PE, Pasnikowski EM, et al. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp Neurol. 1998; 149(2): 398-410. DOI:10.1006/exnr.1997.6737.
  • Lessmann V, Gottmann K, Heumann R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport. 1994; 6(1): 21-25. DOI:10.1097/00001756-199412300-00007.
  • Kokaia M, Ernfors P, Kokaia Z, Elmér E, Jaenisch R, Lindvall O. Suppressed epileptogenesis in BDNF mutant mice. Exp Neurol. 1995; 133(2): 215-224. DOI:10.1006/exnr.1995.1024.
  • Abidin I, Yildirim M, Aydin-Abidin S, et al. Penicillin induced epileptiform activity and EEG spectrum analysis of BDNF heterozygous mice: an in vivo electrophysiological study. Brain Res Bull. 2011; 86(3-4): 159-164. DOI:10.1016/j.brainresbull.2011.06.015.
  • Croll SD, Suri C, Compton DL, et al. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. Neuroscience. 1999; 93(4): 1491-1506. DOI:10.1016/s0306-4522(99)00296-1.
  • Larmet Y, Reibel S, Carnahan J, Nawa H, Marescaux C, Depaulis A. Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat. Neuroreport. 1995; 6(14): 1937-1941. DOI:10.1097/00001756-199510020-00027.
  • Osehobo P, Adams B, Sazgar M, Xu Y, Racine RJ, Fahnestock M. Brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling without affecting paired-pulse measures of neuronal inhibition in adult rats. Neuroscience. 1999; 92(4): 1367-1375. DOI:10.1016/s0306-4522(99)00048-2.
  • Reibel S, Larmet Y, Lê BT, Carnahan J, Marescaux C, Depaulis A. Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience. 2000; 100(4): 777-788. DOI:10.1016/s0306-4522(00)00351-1.
  • Lai SW, Chen JH, Lin HY, et al. Regulatory Effects of Neuroinflammatory Responses Through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol Neurobiol. 2018; 55(9): 7487-7499. DOI:10.1007/s12035-018-0933-z.
  • Li K, Shen S, Ji YT, Li XY, Zhang LS, Wang XD. Melatonin Augments the Effects of Fluoxetine on Depression-Like Behavior and Hippocampal BDNF-TrkB Signaling. Neurosci Bull. 2018; 34(2): 303-311. DOI:10.1007/s12264-017-0189-z.
  • Hacioglu G, Senturk A, Ince I, Alver A. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model. Iran J Basic Med Sci. 2016;19(4):388-393.
  • Sperk G. Kainic acid seizures in the rat. Prog Neurobiol. 1994; 42(1): 1-32. DOI:10.1016/0301-0082(94)90019-1.
  • Wang Q, Yu S, Simonyi A, Sun GY, Sun AY. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol. 2005; 31(1-3): 3-16. DOI:10.1385/MN:31:1-3:003.
  • Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985; 14(2): 375-403. DOI:10.1016/0306-4522(85)90299-4.
  • Kumar A, Prakash A, Pahwa D. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat. Brain Res Bull. 2011; 85(3-4): 158-168. DOI:10.1016/j.brainresbull.2011.03.010.
  • Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V. CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res. 2000; 39(1): 63-71. DOI:10.1016/s0920-1211(99)00111-4.
  • Ravizza T, Rizzi M, Perego C, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia. 2005;46 Suppl 5: 113-117. DOI:10.1111/j.1528-1167.2005.01006.x.
  • Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. Evid Based Complement Alternat Med. 2015; 2015: 972623. DOI: 10.1155/2015/972623.
  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995; 92(19): 8856-8860. DOI:10.1073/pnas.92.19.8856.
  • Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972; 32(3): 281-294. DOI:10.1016/0013-4694(72)90177-0.
  • Benkovic SA, O'Callaghan JP, Miller DB. Sensitive indicators of injury reveal hippocampal damage in C57BL/6J mice treated with kainic acid in the absence of tonic-clonic seizures. Brain Res. 2004; 1024(1-2): 59-76. DOI:10.1016/j.brainres.2004.07.021.
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-278. DOI:10.1016/0003-2697(78)90342-1.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988; 34(3): 497-500.
  • Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991; 196(2-3): 143-151. DOI:10.1016/0009-8981(91)90067-m.
  • Abidin I, Köhler T, Weiler E, et al. Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice. Eur J Neurosci. 2006; 24(12): 3519-3531. DOI:10.1111/j.1460-9568.2006.05242.x.
  • Abidin I, Eysel UT, Lessmann V, Mittmann T. Impaired GABAergic inhibition in the visual cortex of brain-derived neurotrophic factor heterozygous knockout mice. J Physiol. 2008; 586(7): 1885-1901. DOI:10.1113/jphysiol.2007.148627.
  • Psotta L, Lessmann V, Endres T. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiol Learn Mem. 2013; 103: 34-38. DOI:10.1016/j.nlm.2013.03.003.
  • Barton ME, Shannon HE. The seizure-related phenotype of brain-derived neurotrophic factor knockdown mice. Neuroscience. 2005; 136(2): 563-569. DOI:10.1016/j.neuroscience.2005.08.008.
  • Lähteinen S, Pitkänen A, Saarelainen T, Nissinen J, Koponen E, Castrén E. Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur J Neurosci. 2002; 15(4): 721-734. DOI:10.1046/j.1460-9568.2002.01897.x.
  • Abidin İ, Aydin-Abidin S, Mittmann T. Neuronal excitability and spontaneous synaptic transmission in the entorhinal cortex of BDNF heterozygous mice. Neurosci Lett. 2019; 690: 69-75. DOI:10.1016/j.neulet.2018.10.019.
  • Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol. 2019; 56(5): 3295-3312. DOI:10.1007/s12035-018-1283-6.
  • Chen HH, Zhang N, Li WY, et al. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression. Neural Regen Res. 2015; 10(9): 1427-1432. DOI:10.4103/1673-5374.165510.
  • Parrott JM, Porter GA, Redus L, O'Connor JC. Brain derived neurotrophic factor deficiency exacerbates inflammation-induced anhedonia in mice. Psychoneuroendocrinology. 2021; 134: 105404. DOI:10.1016/j.psyneuen.2021.105404.
  • Cognato GP, Agostinho PM, Hockemeyer J, Müller CE, Souza DO, Cunha RA. Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem. 2010; 112(2): 453-462. DOI:10.1111/j.1471-4159.2009.06465.x.