Doksorubisin Kardiyotoksisitesinde Timokinonun Kan Parametreleri Üzerine Etkileri

Bu çalışma Doksorubisinin (DOX) neden olduğu kardiyotoksisitede meydana gelen biyokimyasal parametre değişiklikleri üzerine timokinonun etkilerini araştırmak amacıyla yapılmıştır. Çalışmamızda 18 adet Wistar albino erkek sıçan kullanıldı. Sıçanlar kontrol, doksorubisin ve doksorubisin+timokinon (DOX+TQ) grubu olacak şekilde üç gruba ayrıldı. Kontrol grubu deneyin 5. gününde kuyruk veninden tek seferlik serum fizyolojik; DOX grubu deneyin 5. gününde kuyruk veninden tek doz 45 mg/kg DOX; DOX+TQ grubu yedi gün boyunca gavajla 50 mg/kg timokinon ve deneyin 5. gününde kuyruk veninden tek doz 45 mg/kg DOX aldı. Sıçanlar deneyin son gününde ketamin-ksilazin anestezisi altında sakrifiye edilerek total kan örnekleri alındı ve biyokimyasal parametreler değerlendirildi. Biyokimyasal verilere göre, kontrol grubuna kıyasla DOX grubunda kreatin kinaz miyokardiyal bant (CK-MB), interlökin- 6 (IL-6), interlökin-18 (IL-18), total oksidan seviye (TOS) ve malondialdehit (MDA) değerleri artarken total antioksidan seviye (TAS) değeri düşmüştür. DOX grubuna göre, DOX+TQ grubunda CK-MB, IL-6, IL-18, TOS ve MDA değeri düşerken, TAS değeri artmıştır. Çalışma sonuçlarımız, doksorubisinin kan parametrelerinde neden olduğu bozulmanın timokinon tarafından düzeltilebileceğini göstermektedir.

Effects of Thymoquinone on Blood Parameters in Doxorubicin Cardiotoxicity

This study was conducted to investigate the effects of thymoquinone on biochemical parameter changes in cardiotoxicity caused by doxorubicin (DOX). 18 Wistar albino male rats were used in our study. The rats were divided into three groups as control, doxorubicin and doxorubicin + thymoquinone (DOX + TQ) group. The control group received one-time saline from the tail vein on the 5th day of the experiment. On the 5th day of the experiment, the DOX group received a single dose of 45 mg / kg DOX from the tail vein. The DOX + TQ group received 50 mg / kg thymoquinone by gavage for seven days and a single dose of 45 mg / kg DOX from the tail vein on the 5th day of the experiment. Rats were sacrificed under ketamine-xylazine anesthesia and total blood samples were taken and biochemical parameters were evaluated on the last day of the experiment. According to the biochemical data, in DOX group in while the creatine kinase myocardial band (CK-MB), interleukin-6 (IL-6), interleukin-18 (IL-18), Total Oxidant Status (TOS) and malondialdehyde (MDA) levels increased, the Total Antioxidant Status (TAS) decreased compared to the control group. Compared to the DOX group, while the value of CK-MB, IL-6, IL-18, TOS and MDA decreased, TAS increased in the DOX + TQ group. Results of our study shows that the deteriorative effects of doxorubicin on blood parameters can be corrected by thymoquinone.

___

  • 1. Raj S, Franco VI, Lipshultz SE. Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Current Treatment Options in Cardiovascular Medicine. Current Science Inc. 2014; 16: 315-28. 2. Singal PK, Li T, Kumar D, Danelisen I, Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Molecular and Cellular Biochemistry. 2000; 77–85. 3. Alam MF, Khan G, Safhi MM, Alshahrani S, Siddiqui R, Sivagurunathan Moni S, et al. Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in swiss albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice. 2018; 1–6. 4. Takemura G, Fujiwara H. Doxorubicin-Induced Cardiomyopathy. From the Cardiotoxic Mechanisms to Management. Progress in Cardiovascular Diseases. 2007; 49(5): 330–52. 5. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin Cardiomyopathy. Cardiology. 2010; 115(2):155–62. 6. Oz E, Erbaş D, Surucu SH, Duzgun E. Prevention of doxorubicin-induced cardiotoxicity by melatonin. Molecular and Cellular Biochemistry. 2006; 282: 31–7 7. Oz E, İlhan MN. Effects of melatonin in reducing the toxic effects of doxorubicin. Molecular and Cellular Biochemistry. 2006; 286: 11–5. 8. Bacak Güllü E. and Avci G. Thymoquinone: The Bioactive Component of Nigella Sativa. Kocatepe Veterinary Journal. 2013; 6(1): 51–61. 9. Uz E, Uz B, Selcoki Y, Bayrak R, Kaya A, et al. Cardioprotective Effects of Nigella sativa Oil on Cyclosporine A-Induced Cardiotoxicity in Rats. Basic Clin Pharmacol Toxicol. 2008; 103(6): 574–80. 10. Randhawa MA, Alghamdi MS, Maulik SK. The effect of thymoquinone, an active component of Nigella sativa, on isoproterenol induced myocardial injury. Pak. J. Pharm. Sci. 2013; 26(6): 1215-9. 11. Ojha S, Azimullah S, Mohanraj R, Sharma C, Yasin J, Arya DS, et al. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation. Evidence-Based Complementary and Alternative Medicine. 2015; 1–12. 12. Nagi MN, Al-Shabanah OA, Hafez MM, Sayed-Ahmed MM. Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology. 2011; 25(3): 135–42. 13. Seif AA. Nigella sativa attenuates myocardial ischemic reperfusion injury in rats. Journal of Physiology and Biochemistry. 2013; 69: 937–44. 14. Xiao J, Ke ZP, Shi Y, Zeng Q, Cao Z. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. Journal of Cellular Biochemistry. 2018; 119: 7212–8. 15. Aydin MS, Kocarslan A, Kocarslan S, Kucuk A, Sezen H, Buyukfirat E, et al. Thymoquinone protects end organs from abdominal aorta ischemia / reperfusion injury in a rat model. Braz J Cardiovasc Surg. 2015; 30(1): 77–83. 16. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry. 2004; 37(4): 277–85. 17. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry. 2005; 38(12): 1103–11. 18. Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology. 1979; 135(3): 372–6. 19. Nadif R, Bourgkard E, Dusch M, Bernadac P, Bertrand JP, Mur JM, et al. Relations between occupational exposure to coal mine dusts, erythrocyte catalase and Cu++Zn++ superoxide dismutase activities, and the severity of coal workers’ pneumoconiosis. Occupational and Environmental Medicine. 1998; 55(8): 533–40. 20. Atta MS, El-Far AH, Farrag FA, Abdel-Daim MM, Al Jaouni SK, Mousa SA. Thymoquinone attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxidative Medicine and Cellular Longevity. 2018; 1-10. 21. Zheng J, Lee HCM, Bin Sattar MM, Huang Y, Bian JS. Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury. European Journal of Pharmacology. 2011; 652(1–3): 82–8. 22. Arslan SO, Gelir E, Armutcu F, Coskun O. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rat. Nutrition Research. 2005; 25:7 673–80. 23. Mansour MA. Protectıve effects of thymoquınone and desferrıoxamıne agaınst hepatotoxıcıty of carbon tetrachlorıbe ın mıce. Life Sciences. 2000; 66(26): 2583–91. 24. Yuluǧ E, Türedi S, Karagüzel E, Kutlu Ö, Menteşe A, Alver A. The short term effects of resveratrol on ischemia-reperfusion injury in rat testis. Journal of Pediatric Surgery. 2014; 49(3): 484–9.