Erişkin ve Çocukluk Cağı AML Oluşumunda ER, SOCS1, p15, E-cadherin ve RARB Promoter Metilasyonu Metilatör Fenotip Üyesi Olmaya Aday genlerdir ve Metilasyondan DNMT 3A Başlıca Sorumlu Enzim Olarak Ön Plana Çıkmaktadır

Amaç: Hipermetilatör fenotipi, hem akut miyeloid lösemi (AML)hem de diğer tümörler için bir terim olarak kullanılır. On geninmetilasyon durumlarını analiz ettik (DAP-kinaz, SOCS1, ER, p15,Ecadherin, RARβ, p16, GSTP1, HIC1 ve p73) ve bunları DNA metiltransferazların (DNMT’ler) ifadesiyle korele ettik.Gereç ve Yöntem: 25 pediatrik ve 25 yetişkin AML örneğinde metilasyon spesifik PCR ve COBRA ve DNMT’lerin (DNMT 1, 3A ve 3B)ekspresyonunu kullanarak metilasyon profillerini analiz ettik.Bulgular: ER, SOCS1, p15, E cadherin ve RARB genleri, aynı hastalarda ve metilasyon fenotipinin üyeleri arasında önemli ölçüdebirlikte metillendi.Sonuç: Çalışmamız, DNMT3A geninin dramatik bir şekilde yukarıregüle edildiğini ve metilasyon fenotipi ile anlamlı şekilde koreleolduğunu gösterdi.

ER, SOCS1, p15, E-cadherin and RARB are more Likely to be Members of the Methylator Phenotype of Adult and Childhood AML and Their Methylation is Primarly Regulated by an Overexpression of DNMT 3A

Objectives: The hypermethylator phenotype is used as a term forboth acute myeloid leukemia (AML) and other tumors. We analyzed the methylation statuses of ten genes (DAP-kinase, SOCS1,ER, p15, Ecadherin, RARβ, p16, GSTP1, HIC1 and p73) and correlated them with the expression of DNA methyltransferases (DNMTs).Material and Method: We analyzed the methylation profiles usingmethylation specific PCR and COBRA and the expression of DNMTs(DNMT 1, 3A and 3B) by quantitative RT-PCR in 25 pediatric and 25adult AML samples.Results: The ER, SOCS1, p15, E cadherin, and RARB genes methylated together significantly in the same patients and members ofthe methylator phenotype.Conclusion: Our study demonstrated that the gene DNMT3A wasdramatically upregulated and significantly correlated with themethylator phenotype.

___

  • 1. Figueroe ME, Reimers M, Thompson RF, et al. An integrative genomic and epigenomic approach for the study of transcriptional regulation. PLoS ONE 2008;3:e1882.
  • 2. Noyer-Weidner M, Trautner TA. Methylation of DNA in Prokaryotes. EXS 1993; 64:39-108.
  • 3. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 200;20:3139-3155.
  • 4. Gowher, Albert Jeltsch. Mammalian DNA methyltransferases: new discoveries and open questions. Humaira Biochemical Society Transactions 2018, 46(5):
  • 5. Bird, A. P., and A. P. Wolffe.. Methylation-induced repression: belts, braces, and chromatin. Cell 1999; 99:451-454.
  • 6. Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000; 9:2395–2402.
  • 7. Robertson, KD, Wolffe, AP. DNA methylation in health and disease. Nat. Reviews Genetics 2000;1:11–19.
  • 8. Toyota M, Ahuja N, Suzuki H, et al. Aberrant Methylation in Gastric Cancer Associated with the CpG Island Methylator Phenotype. Cancer Res 1999;59:5438-5442.
  • 9. Yamashita K, Dai T, Dai Y, et al. Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell 2003;4:121-131.
  • 10. Melki JR, Vincent PC. Clark SJ. Concurrent DNA Hypermethylation of Multiple Genes in Acute Myeloid Leukemia. Cancer Res 1999;59:3730.
  • 11. Rush LJ, Dai Z, Smiraglia DJ,et al. Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood 2001; 97:3226-3233.
  • 12. Toyota M, Kopecky K J., Toyota MO, et al. Methylation profiling in acute myeloid leukemia. Blood, 2001; 97:2823-2829.
  • 13. Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15INK4b Gene in Myelodysplastic Syndromes Is Frequent and Acquired During Disease Progression. Blood 1998; 91: 2985-2990.
  • 14. Chen CY, Tsay W, Tang JL, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 2003;37:300-305.
  • 15. Voso MT, Scardocci A, Guidi F, et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 2004;103: 698-700.
  • 16. Li Q, Kopecky KJ., Mohan A ,et al. Estrogen Receptor Methylation Is Associated with Improved Survival in Adult Acute Myeloid Leukemia. Clin Cancer Res 1999;5:1077.
  • 17. Gutierrez MI, Siraj AK, Bhargava M, et al. Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia 2003;17:1845-1850.
  • 18. Ueki T, Toyota M, Sohn T, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 2000;60:1835-1839.
  • 19. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999;96:8681-8686.
  • 20. Carroll WL, Bhojwani D, Min DJ, et al. Pediatric Acute Lymphobalastic Leukemia. Hematology 2003;102-125.
  • 21. Sather HN. Age at diaognosis in chilhood acute lymphoblastic leukemia. Med Pediatr Oncol 1986:14:166-72.
  • 22. Crist W, Boyett J, Pullen J et al. Clinical and biologic features predict poor prognosis in acute lymphoid leukemias in children and adolescents: a Pediatric Oncology Group review. 1986;14:135-139.
  • 23. Smith M, Bleyer A, Crist W et al. Uniform criteria for childhood acute lymphoid leukemia risk classification. J. Clin Oncol 1996;14:680-1.
  • 24. Okano, M., Xie, S. Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet 1998;19:219–220.
  • 25. Okano, M., Bell, D.W., Haber, D.A. Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247–257.
  • 26. Hata K, Okano M, Lei H, and Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002;129:1983-1993.
  • 27. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000;404:1003-1007.
  • 28. Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002;22:480-491.
  • 29. Issa JP, Vertino PM, Wu J, et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 1993;85:1235-1240.
  • 30. Eads CA, Danenberg KD, Kawakami K, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 1999;59:2302-2306.
  • 31. Melki JR, Warnecke P, Vincent PC, et al. Increased DNA methyltransferase expression in leukaemia. Leukemia 1998;12:311-316.
  • 32. Ekmekci CG, Gutierrez MI, Siraj AK, et al. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol 2004;77:233-240.
  • 33. Marcus J, Garin MT, Bies J, et al. Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Res 2007;67:992-1000.
  • 34. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997;25:2532– 2534.
  • 35. Stirewalt DL, Clurman B, Appelbaum FR, et al. p73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 1999;13:985-990.
  • 36. Aggerholm A, Holm MS, Guldberg P, et al. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006;76:23-34.
  • 37. Herman JG, Civin CI, Issa JP, et al. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997;57: 837-841.
  • 38. Nosaka K, Maeda M, Tamiya S, et al. Increasing Methylation of the CDKN2A Gene Is Associated with the Progression of Adult T-Cell Leukemia. Cancer Res 2000;60:1043–1048.
  • 39. Chim CS, Wong AS, Kwong YL. Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol 2003; 82:738-742.
  • 40. Guo SX, Taki T, Ohnishi H, et al. Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk Res 2000;24:39-46.
  • 41. Issa JPJ, Zehnbauer BA, Kaufman S, et al. HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res 1997;57:1678-1681.
  • 42. Plass C, Yu F, Yu L, et al. Restriction landmark genome scanning for aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene. Oncogene 1999;18:3159-65.
  • 43. Uehara E, Takeuchi S, Tasaka T, et al. Aberrant methylation in promoter-associated CpG islands of multiple genes in therapy-related leukemia. Int J Oncol 2003;23:693-6.
  • 44. Li Q, Kopecky KJ, Mohan A, et al. Estrogen Receptor Methylation Is Associated with Improved Survival in Adult Acute Myeloid Leukemia. Clin Cancer Res 1999;5:1077-1084.
  • 45. Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999;27:2291-2298.
  • 46. Langer F, Dingemann J, Kreipe H, Lehmann U. Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome. Leuk Res 2005;29: 325-329.
  • 47. Aoki A, Suetake I, Miyagawa J, et al. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 2001; 29:3506-3512.
  • 48. Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97:1172-1179.
  • 49. Xie S, Wang Z , Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999;236:87-95.
  • 50. Bullinger L, Döhner K, Bair E, et al. Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia. N Engl J Med 2004;350:1605-1616.