Cross-interactions between Norepinephrine, Methicillin-Resistant Staphylococcus aureus and Human Osteoblast Cells in Culture Conditions

Objective: The role of norepinephrine (NE) on growth, adhesion and invasion of methicillin-resistant Staphylococcus aureus (MRSA) ATTC 43300 was examined in human osteoblast (HOB) cells. The effects of NE and/or MRSA on the viability and cell death pathways of HOB cells were also investigated. Furthermore, the alterations of bacterial response to oxidative stress (H2O2) were analyzed in the presence/absence of NE. Materials and Methods: Bacterial growth was detected spectrophotometrically. The colony counting method was examined for adhesion-invasion. The alteration of HOB cell viability was determined by methyl thiazolyl diphenyl-tetrazolium bromide (MTT) assay. The death pathways of HOB cells were examined microscopically using acridine orange-ethidium bromide dual staining and dichlorofluorescein-diacetate (DCF-DA) dye. The bacterial response to H2O2 was investigated by agar dilution.Results: The growth of bacterium was not affected in the presence of NE. Bacterial adhesion was decreased by NE (p<0.0001) while high-level NE induced invasion (p=0.013). HOB cell viability was reduced by MRSA and/or NE (p<0.001). MRSA and co-existence of MRSA and NE caused necrosis more than apoptosis in HOB cells (p<0.05). NE did not alter the bacterial response to oxidative stress. Conclusion: Norepinephrine has different effects on the biological properties of both MRSA and HOB cells.

___

  • 1. Lyte M, PPE Freestone. Microbial Endocrinology. 1st ed. New York: Springer; 2010. [CrossRef] google scholar
  • 2. Lyte M, JF Cryan. Microbial Endocrinology: The microbio-ta-gut-brain axis in health and disease. 1st ed. New York: Springer; 2014. [CrossRef] google scholar
  • 3. Freestone P. Communication between bacteria and their hosts. Scientifica 2013; 2013: 1-15. [CrossRef] google scholar
  • 4. Boyanova L. Stress hormone epinephrine (adrenaline) and nor-epinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe 2017; 44: 13-9. [CrossRef] google scholar
  • 5. Gümüş D, Kalaycı Yüksek F, Sefer Ö, Yörük E, Uz G, Anğ Küçüker M. The roles of hormones in the modulation of growth and virulence genes' expressions in UPEC strains. Microb Pathog 2019; 132: 31924. [CrossRef] google scholar
  • 6. Doherty NC, Tobias A, Watson S, Atherton JC. The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen Helicobacter pylori. Helicobacter 2009; 14(3): 223-30. [CrossRef] google scholar
  • 7. Yang Q, Anh NDQ, Bossier P, Defoirdt T. Norepinephrine and dopa-mine increase motility, biofilm formation, and virulence of Vibrio harveyi. Front Microbiol 2014; 5: 1-12. [CrossRef] google scholar
  • 8. Xu F, Wu C, Guo F, Cui G, Zeng X, Yang B, et al. Transcriptomic anal-ysis of Campylobacter jejuni NCTC 11168 in response to epineph-rine and norepinephrine. Front Microbiol 2015; 6: 1-11. [CrossRef] google scholar
  • 9. Sobieszczanska B, Turniak M, Olbromski M, Walczuk U, Marcin C, Tukiendorf A. Norepinephrine affects the interaction of adher-ent-invasive Escherichia coli with intestinal epithelial cells. Viru-lence 2021; 12(1): 630-7. [CrossRef] google scholar
  • 10. Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A, et al. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene ex-pression. Infect Immun 2007; 75(9): 4597-607. [CrossRef] google scholar
  • 11. Cambronel M, Nilly F, Mesguida O, Boukerb AM, Racine PJ, Bac-couri O, et al. Influence of catecholamines (Epinephrine/Norepi-nephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis. Front Microbiol 2020; 11: 1-13. [CrossRef] google scholar
  • 12. Gonzales XF, Castillo-Rojas G, Castillo-Rodal AI, Tuomanen E, Lopez-Vidal Y. Catecholamine norepinephrine diminishes lung epithelial cell adhesion of Streptococcus pneumoniae by binding iron. Microbiology (United Kingdom) 2013; 159: 2333-41. [CrossRef] google scholar
  • 13. Nicolas A, Deplanche M, Commere P-H, Diot A, Genthon C, Marques da Silva W, et al. Transcriptome architecture of osteoblastic cells in-fected with Staphylococcus aureus reveals strong inflammatory re-sponses and signatures of metabolic and epigenetic dysregulation. Front Cell Infect Microbiol 2022; 12: 1-20. [CrossRef] google scholar
  • 14. Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A plays a critical role in mediating bone destruc-tion and bone loss in osteomyelitis. PLoS One 2012; 7(7): e40586. [CrossRef] google scholar
  • 15. Castilho IG, Dantas STA, Langoni H, Araujo JP, Fernandes A, Alva-renga FCL, et al. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis. J Dairy Sci 2017; 100(8): 6414-21. [CrossRef] google scholar
  • 16. Mosmann T. Rapid colorimetric assay for cellular growth and sur-vival: Application to proliferation and cytotoxicity assays. J lmmu-nol Methods 1983; 65: 55-63. [CrossRef] google scholar
  • 17. Tapajos ECC, Longo JP, Simioni AR, Lacava ZGM, Santos MFMA, Morais PC, et al. In vitro photodynamic therapy on human oral keratinocytes using chloroaluminum-phthalocyanine. Oral Oncol 2008; 44(11): 1073-9. [CrossRef] google scholar
  • 18. Jiang H, Ren Y, Zhao J, Feng J. Parkin protects human dopaminer-gic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 2004; 13(16): 1745-54. [CrossRef] google scholar
  • 19. Hugo AA, Kakisu E, De Antoni GL, Perez PF. Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Lett Appl Microbiol 2008; 46(6): 613-9. [CrossRef] google scholar
  • 20. Liao H, Zhong X, Xu L, Ma Q, Wang Y, Cai Y, et al. Quorum-sens-ing systems trigger catalase expression to reverse the oxyR dele-tion-mediated VBNC state in Salmonella typhimurium. Res Micro-biol 2019; 170(2): 65-73. [CrossRef] google scholar
  • 21. Szelenyi J and Vizi E. S. The catecholamine-cytokine balance: Inter-action between the brain and the immune system. Ann N Y Acad Sci 2007; 1113: 311-24. [CrossRef] google scholar
  • 22. Osier DN and Dixon C. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2016; 1640: 15-35. [CrossRef] google scholar
  • 23. Gümüş D, Kalaycı-Yüksek F, Uz G, Bilgin M, Anğ-Küçüker M. The Possible effects of different hormones on growth rate and ability of biofilm formation in different types of microorganisms. Acta Biol Marisiensis 2018; 34(1): 47-51. google scholar
  • 24. Gümüş D, Kalaycı Yüksek F, Gündoğan Gİ, Anğ Küçüker M. Farklı hormonların ve hücre hatlarının bir üropatojen E . coli suşunun üremesi üzerine etkileri The alterations on growth of a uropatho-genic E . coli with the effects of both different hormones and cell lines. Kocaeli Med J 2020; 9(2): 68-76. [CrossRef] google scholar
  • 25. Xue-Min Z, Shu-Shan S, Ya-Fei L. Proliferative activity of normal human osteoblasts cultured with neuropeptides at different concentrations. J Clin Rehabil Tissue Engin Res 2010; 14(50): 9325-28. google scholar
  • 26. Grassel S. The role of peripheral nerve fibers and their neurotrans-mitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 2014; 6(485): 1-13. [CrossRef] google scholar
  • 27. Suzuki A, Palmer G, Bonjour JP, Caverzasio J. Catecholamines stimulate the proliferation and alkaline phosphatase activity of MC3T3-E1 osteoblast-like cells. Bone 1998; 23(3): 197-203. [CrossRef] google scholar
  • 28. Stracquadanio S, Musso N, Costantino A, Lazzaro LM, Stefani S, Bongiorno D. Staphylococcus aureus internalization in osteoblast cells: Mechanisms, interactions and biochemical processes. what did we learn from experimental models? Pathogens 2021; 10(2): 1-24. [CrossRef] google scholar
  • 29. Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum 2012; 64(3): 729-39. [CrossRef] google scholar
  • 30. Ning R-de, Zhang X-Long, Li Q-Tian, Guo XK. The effect of Staph-ylococcus aureus on apoptosis of cultured human osteoblasts. Orthop Surg 2011; 3(3): 199-204. [CrossRef] google scholar
  • 31. Choi YS, Ham DS, Lim JY, Lee YK. Validation of the Osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) on rat model with calvaria defect. Tissue Eng Regen Med 2021; 18(4): 671-83. [CrossRef] google scholar
  • 32. Musso N, Caruso G, Bongiorno D, Grasso M, Bivona DA, Campanile F, et al. Different modulatory effects of four methicillin-resistant Staphylococcus aureus clones on MG-63 osteoblast-like cells. Bio-mol 2021; 11(1): 1-18. [CrossRef] google scholar
  • 33. Hermann I, Rath S, Ziesemer S, Volksdorf T, Dress RJ, Gutjahr M, et al. Staphylococcus aureus hemolysin A disrupts cell-matrix adhe-sions in human airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52(1): 14-24. [CrossRef] google scholar
  • 34. Alexander EH, Rivera FA, Marriott I, Anguita J, Bost KL, Hudson MC. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol 2003; 3: 1-11. [CrossRef] google scholar
  • 35. Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS. Nitrosa-tive stress: Activation of the transcription factor OxyR. Cell 1996; 86(5): 719-29. [CrossRef] google scholar
  • 36. Fields JA and Thompson SA. Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell inva-sion. J Bacteriol 2008; 190(9): 3411-6. [CrossRef] google scholar