Su Kalitesi Durum Değerlendirmesi- Salda Gölü, Türkiye

Tüm dünyada iç su kütleleri hem iklim değişikliğinin hem de antropojenik faaliyetlerin olumsuz etkisi altındadır. Göllerin ve sulak alanların su yüzey alanları zamanla azalır ve bu küresel gerçeklik, özellikle su kütleleri çeşitli insan faaliyetleriyle karşı karşıya kalırsa, su kalitesinin bozulmasını beraberinde getirir. Bu tür hassas bir ekosisteme örnek, Türkiye'nin güneybatısında yer alan Salda Gölü’dür. Salda Gölü, Mars ile olan benzerlikleri nedeniyle uluslararası kamuoyunun ilgisini çekmiş, gölün spesifik özelliklerini daha iyi anlamak için farklı disiplinler ve bilim adamları tarafından birçok araştırma yapılmış ve su kalitesi zaman içinde belirli parametrelerle ortaya konmuştur. Çalışma kapsamında gölde seçilen üç istasyondan üç farklı derinlikte toplanan su örneklerinde hem ulusal mevzuatta hem de AB'nin Su Çerçeve Direktifinde (SÇD) belirtilen fiziko-kimyasal parametreler, organik madde içeriği, besinler, metaller ve yarı metallerin analiz sonuçları sunulmuş, Çevresel Kalite Standartlarını (ÇKS) aşan parametrelere dikkat çekilerek potansiyel kirlilik kaynakları ile birlikte sonuçlar değerlendirilmiştir. Elde edilen sonuçlarla göre gölün azami dikkat ve özen gerektirdiği bir kez daha ortaya konmuştur.

Presenting Water Quality Characteristics of Lake Salda, Turkey

Inland water bodies, either flowing or non-flowing all around the world, are under the adverse effect of both the climate change and anthropogenic activities. The water surface areas of lakes and wetlands diminish over time and thus, this global reality brings together the deterioration of water quality especially if such water bodies confront with a variety of human activities exerting pollutants. An example of such a vulnerable ecosystem is the Lake Salda located in the southwestern part of Turkey. This lake has gained the attention of international public due to its similarities with Mars. Over a long period of time, many researches have been conducted in this lake by different disciplines and scientists to better understand its unique features. In this study, water samples from the three selected stations on the lake at three different depths were collected and analyzed on physico-chemical parameters, organic matter content, nutrients, metals and semi metals according to national legislation and Water Framework Directive (WFD) of EU. The results are tabulated and analyzed in detail considering the potential pollution sources arising from the lake’s basin. The pollutants are linked with the experimental measurements, and those parameters that exceeded the Environmental Quality Standards (EQS) are underlined. It is for sure that the lake necessitates utmost care and attention according to the results achieved.

___

  • Aybar D. H., E. Icigen (2020). A content analysis on the internet news about Lake Salda as a new destination. Mediterranean Journal of Humanities, vol. x, pp. 49-59, in Turkish. DOI: 10.13114/MJH.2020.517
  • Kempe S., J. Kazmierczak (2011). Soda Lakes in Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht, pp. 824-829, DOI: 10.1007/978-1-4020-9212-1_191
  • USGS, (2022). Soda Lakes, U.S. Geological Survey https://www.usgs.gov/volcanoes/soda-lakes (accessed July 1, 2022)
  • Kucukergin K. G., M. Gurlek (2020). What if this is my last chance?: developing a last-chance tourism motivation model. Journal of Destination Marketing and Management, vol. 18, no. 100491, 2020, DOI:10.1016/j.jdmm.2020.100491
  • Russell M. J., Ingham J. K., Zedef V., Maktav D., Sunar F., Hall A. J., A. E. Fallick (1999). Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey. Journal of Geological Society, vol. 156, no.5, pp. 869-888, 1999. DOI:10.1144/gsjgs.156.5.0869
  • Shirokova L. S., Mavromatis V., Bundeleva I. A., Pokrovsky O. S., Bénézeth P., Gérard E., Pearce C. R., E. H. Oelkers (2013). Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquatic Geochemistry, vol. 19, pp. 1-24, 2013. DOI: 10.1007/s10498-012-9174-3.
  • Horgan B. H. N., Anderson R. B., Dromart G., Amador E. S., M. S. Rice (2019). The mineral diversity of Jerezo Crater: evidence for possible lacustrine carbonates on Mars. Icarus, vol. 339 no.113526, 2020. DOI:10.1016/j.icarus. 113526
  • Varol S., Davraz A., Sener S., Kirkan B., Tokgozlu A., F. Aksever (2017). Project on the determination of pollution level and monitoring the hydrogeological and hydrogeochemical properties of Lake Salda Wetland. The Scientific and Technological Research Council of Turkey (TUBITAK), Project no: 114Y084.
  • Varol S., Davraz A., Aksever F., Sener S., Sener E., Kirkan B., A. Tokgozlu (2020). Determination of the origin and recharge process of water resources in Salda Lake Basin by using the environmental, tritium and radiocarbon isotopes (Burdur/Turkey). Bulletin of the Mineral Research and Exploration, vol.161, pp.57-70. DOI:10.19111/bulletinofmre.604352
  • Varol S., Davraz A., Aksever F., Sener S., Sener E., Kirkan B., A. Tokgozlu (2021). Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution. Journal of Environmental Health Science and Engineering, vol.19, pp. 681-706. DOI:10.1007/s40201-021-00638-5, 2021.
  • Balci N., Gunes Y., Kaiser J., On S. A., Eris K., Garczynski B., B. H. N. Horgan (2020). Biotic and abiotic imprints on Mg-rich stromatolites: lessons learnt from Lake Salda, SW Turkey. Geomicrobiology Journal, vol. 37, no.5, pp.401-425. DOI:10.1080/01490451.2019.1710784
  • NASA, Earth Observatory, (2022). https://earthobservatory.nasa.gov/images/147041/jez-like-mars (accessed July 1, 2022)
  • Ariturk S. K., B. Ustaoglu (2020). Determination of climate change impacts on Lake Salda Basin. Journal of Anatolian Cultural Researches, vol. 4, no.3, pp.233-249, in Turkish. DOI: 10.15659/ankad.v4i3.132
  • Dereli M. A., E. Tercan (2020). Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Science Informatics, vol. 13, no.3, pp.709-718. DOI: 10.1007/s12145-020-00460-x.
  • Kazanci N., Girgin S., M. Dügel (2004). On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: Future management proposals. Aquatic Conservation: Marine and Freshwater Ecosystems, vol.14, no.2, pp:151-162. DOI: 10.1002/aqc.609
  • Davraz A., Varol S., Sener E., Sener S., Aksever F., Kırkan B., A. Tokgözlü (2019). Assessment of water quality and hydrogeochemical processes of Salda alkaline lake (Burdur, Turkey). Environ Monit Assess, vol.191, no.:701. DOI: 10.1007/s10661-019-7889-y.
  • EC (European Commission), (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities (327/1 22/12/2000).
  • Temurcin K., Atayeter Y., U. Tozkoparan (2019). Tourism potential of Lake Salda and its vicinity and its impact on the socio-economic structure of Yesilova District. Suleyman Demirel University, Journal on Social Sciences of the Faculty of Arts and Sciences, vol.2, no.47, pp.40-63, in Turkish. DOI: 10.35237/sufesosbil.604016.
  • Kaiser J., On B., Arz H., S. Akcer-On (2016). Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia). Journal of Limnology, vol.75, no.3, pp.581-596. DOI: 10.4081/jlimnol.2016.1337.
  • Kara V. M., Celep M., S. Kanigur (2020). Determining the physical carrying capacity of Lake Salda in the scope of overtourism. Journal of Tourism and Gastronomy Studies, vol.Special Issue (4), pp.79-92, in Turkish. DOI: 10.21325/jotags.2020.671.
  • WWF (2021). World Wildlife Fund, There is no other place like Salda. https://www.wwf.org.tr/calismalarimiz/ormanlar/baska_salda_yok_/(accessed 11 March 2021) (in Turkish)
  • MoEU (2021). Ministry of Environment and Urbanization, Lake Salda Special Environmental Protection Area. https://tvk.csb.gov.tr/salda-golu-i-91578 (accessed 11 March 2021) (in Turkish).
  • WMGD (2020). Burdur River Basin Management Plan. Ministry of Agriculture and Forestry, Water Management General Directorate, 450 p., Ankara, Turkey (in Turkish).
  • RSWQ (2021). Changes on the National Regulation on Surface Water Quality (RSWQ), Official Newspaper dated 16.06.2021 and numbered 31513.
  • Islam M. S., Hossain M. B., Matin A., M. S. I. Sarker, (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River Estuary, Bangladesh. Chemosphere, vol.202, pp.25–32, 2018. DOI: 10.1016/j.chemosphere.2018.03.077.
  • El-Hassanin A. S., Mamaka M. R., Abdel-Rahman G. N., Abu-Sree Y. H., E. M. Saleh (2020). “Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicol Rep, vol.7, pp.10-15. DOI: 10.1016/j.toxrep.2019.11.018.
  • Kayode O. T., Ogunyemi E. F., Odukoya A. M., Aizebeokhai A. P. (2022). Assessment of chromium and nickel in agricultural soil: implications for sustainable agriculture. IOP Conf. Ser.: Earth Environ. Sci., vol.993, no.012014. DOI: 10.1088/1755-1315/993/1/012014
  • Zhang Y., Liu S., Cheng F., Coxixo A., Hou X., Shen Z., L. Chen (2018). Spatial distribution of metals and associated risks in surface sediments along a typical urban river gradient in the Beijing Region. Arch Environ Contam Toxicol, vol.74, pp.80-91, 2018. DOI: 10.1007/s00244-017-0462-1.
  • Tian H. Z., Lu L., Cheng K., Hao J. M., Zhao D., Wang Y., Jia W., P Qiu (2012). “Anthropogenic atmospheric nickel emissions and its distribution characteristics in China.” Science of the Total Environment, vol.417-418, pp.148–157. DOI: 10.1016/j.scitotenv.2011.11.069.
  • PubCHEM, (2020). National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/#query= (accessed July 1, 2022).