NFC Doplu Titania Fotokatalizörünün Çorlu Evsel Atıksu Giriş İnert KOİ fraksiyonu Üzerindeki Etkisinin Değerlendirilmesi

Bu makalede; antibiyotik, renk gibi gelişmekte olan kirleticilerin gideriminde bir fotokatalist olarak etkinliği kanıtlanmış NFC-doplu Titanyumun, Çorlu ilçesi evsel atıksu arıtma tesisi giriş suyunda biyolojik olarak parçalanamayan KOİ fraksiyonu üzerindeki etkisini belirlemeye yönelik deneysel çalışmalar yürütülmüştür. NFC-doplu titanyuma maruz kalan (ham + fotokatalist) ve maruz kalmayan (ham) atık suların SI ve XI bileşenlerinin belirlenmesi, süzülen atık su ile aynı konsantrasyonda hazırlanan glikoz reaktörüne paralel olarak çalışan hem ham hem de filtrelenmiş atıksu reaktörlerinde gerçekleştirilen deney yöntemine dayandırılmıştır. Bütün reaktörler kesikli modda 30 gün boyunca çalıştırılmıştır. Konvansiyonel karakterizasyon sonuçlarına göre, incelenen evsel ham atıksuyun toplam ve çözünmüş KOİ değerleri sırasıyla 535 mg/l ve 315 mg/l olarak  ölçülmüş ve ST0/CT0 oranı %59 olarak hesaplanmıştır. Ayrıca, deneysel çalışma sonunda fotokatalist maruziyeti öncesi ve sonrası COD giderim verimi toplam KOİ için sırasıyla %67 ve %60, çözünmüş KOİ için %77 ve %75 olarak hesaplanmıştır. Her iki reaktördeki atıksuların inert KOİ fraksiyonları ise sırasıyla Çözünmüş İnert KOİ (SI0) için 23 mg /l ve 9 mg/l, Partiküler inert KOİ (XI0) için 56 mg /l ve 60 mg/l ve CI0/CT0 oranı da %15 ve %13 olarak hesaplanmıştır. Tüm bu sonuçlar göstermektedir ki; giriş ham atıksuyunun fotokataliste maruziyetinden 30 gün sonra, her iki reaktörde inert toplam giriş KOİ fraksiyonlarında önemli bir değişim gözlemlenmemesine ragmen, ham + fotokatalist atıksu reaktöründe çözünmüş inert kısmın %2 azaldığı, partiküler inert kısmın da %2 arttığı görülmüştür. Bunun nedeni NFC-doplu Titanyumun adsorbsiyon etkisi olarak düşünülebilir. 

Evaluation the Impact of NFC-dopped Titania Photocatalyst on Initial Inert COD Fraction of Çorlu Town Domestic Wastewater

In this paper, experimental studies were carried out to determine the impact of NFC dopped Titania, which is proven success in emerging pollutants such as antibiotic and color removal as a photocatalyst, on influent non-biodegradable COD fraction of Çorlu town domestic wastewater treatment plant. The determination of SI and XI components of wastewaters which are exposed (raw + photocatalyst) and unexposed (raw) to the NFC-dopped titania, are based on the experimental method carried out in both raw and filtred reactors which are run parallel to the glucose reactor prepared as same  concentration with filtered wastewater. All reactors had been run thorugh 30 days in batch reactor mode. According to the results; total and soluble COD were measured as 535 mg/L and 315 mg/L, repectively and ST0/CT0 ratio was calculated as 59%. Furthermore, at the end of the experimental study, COD removal ratio for both reactors were calculated as 67 % and 60% for total COD and 77% and %75 for soluble COD. Inert COD fractions of both wastewaters were found for Soluble Inert COD (SI0) as 23 mg /L and 9 mg/L, particulate inert COD (XI0) as 56 mg /L and 60 mg/L and CI0/CT0 ratio was calculated as 15% and 13%.  These all results shows that, after photocatalyst exposition, at the end of the 30 days, it was not observed any important variation in terms of inert total COD fraction between two reactors. Furthermore, it is understood that at the end of the 30 days, while soluble inert fraction reduces 2%, particulate inert fraction also increases 2%. The reason of this situation can be thought as the adsorbtion effect of NFC-dopped Titania. 

___

  • [1] Wentze, M.C., Mbewe, A., Lakay, M.T., Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters, Water SA., 25, 327–336.
  • [2] Henze, M., Van Loosdrecht, M.C., Ekama, G.A., Brdjandnovic, D. (2008). Biological Wastewater Treatment—Principles, Modeling and Design; IWA Publishing: London, UK.
  • [3] Carmen, Z., Daniela, S.(2012).Textile organic dyes—Characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; InTech Euro: Rijeka, Croatia, 55–85.
  • [4] Takahashi, N., Kumagai, T. (2006). Removal of dissolved organic carbon and color from dyeing wastewater by pre-ozonation and subsequent biological treatment. Ozone Sci. Eng., 28, 199–205. [CrossRef]
  • [5] Bae,W., Won, H., Hwang, B., Toledo, R.A., Chung, J.W., Kwon, K., Shim, H. (2015) Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment. J. Hazard. Mater. 287, 421–428. [CrossRef] [PubMed]
  • [6] Lindholm-Lehto, P.C., Knuutinen, J.S., Ahkola, H.S.J., Herve, S.H. (2015) .Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ. Sci. Pollut. Res., 22, 6473–6499. [CrossRef] [PubMed]
  • [7] Carstea, F.M., Bridgeman, J., Baker, A., Reynolds, D.M. (2016). Fluorescence spectroscopy for wastewater monitoring:A review. Water Res., 95, 205–219. [CrossRef] [PubMed]
  • [8] Ata R., Yıldız Töre G. (2019) Characterization and removal of antibiotic residues by NFC-doped photocatalytic oxidation from domestic and industrial secondary treated wastewaters in Meric-Ergene Basin and reuse assessment for irrigation, Journal of Env. Management, 233, 673-680.
  • [9] Ubay Çokgör, E., Orhon, D.,Sözen, S. (1999) Evsel ve Endüstriyel Atıksularda KOI Bileşenleri, SKKD., 9 (2), 31-39.
  • [10] Yıldız G. (2005). Characterization and biological treatability ofacrylic and polyamid fiber based carpet finishing wastewater, phD Thesis, İstanbul Technical University, İstanbul.
  • [11] Orhon, D. and Artan, N. (1994) Modelling of Activated Sludge Systems, Technomic Publishing Co. Inc., USA.
  • [12] Henze, M. (1992). Characterization of Wastewater For Modelling of Activated Sludge Processes, Water Sci. Technol., 25 (6),1-15.
  • [13] Plosz, B.G., Vogelsang, C., Macrae, K., Heiaas, H., Lopez, A., Liltved, H., Langford, K. (2010). The BIOZO process—A biofilm system combined with ozonation: Occurrence of xenobiotic organic micro-pollutants in and removal of polycyclic aromatic hydrocarbons and nitrogen from landfill leachate. Water Sci. Technol., 61, 3188–3197. [CrossRef] [PubMed]
  • [14] Singh S., Singh P.K., Mahalingam H. (2015). An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation International Journal of Environmental Research, 9, 535-544.
  • [15] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., (2001). Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 293,269-271.
  • [16] El-Sheikh S.M., Zhang G., El-Hosainy H.M., Ismail A.A., O'Shea, P. Falaras K.E., Kontos A.G., DDionysiou.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation, Journal of Hazardous Materials, 280,723-733.
  • [17] Sacco O., Stoller M., Vaiano V., Ciambelli P., Chianese A., Sannino D. (2012). Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO2 Photocatalysts, International Journal of Photoenergy, Article ID 626759, 8 pages http://dx.doi.org/10.1155/2012/626759, Volume 2012.
  • [18] Devi L.G., Kavitha R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Applied Catalysis B: Environmental, 140-141,559-587.
  • [19] APHA (1998). Standard Methods for the Examination of Water and Wastewater, 1998. 20th edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • [20] Orhon, D., Karahan, Ö., and Sözen, S. (1999). The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters, Wat. Res.,33 (14), 3191-3203.