The Role of rs4626 and rs7221352 Polymorphisms on the TOB1 Gene in Turkish Relapsing-Remitting Multiple Sclerosis Patients

The Role of rs4626 and rs7221352 Polymorphisms on the TOB1 Gene in Turkish Relapsing-Remitting Multiple Sclerosis Patients

Objective: Multiple sclerosis often causes neurological disability and reduced quality of life. Genetic biomarkers are important tools for the diagnosis and prognoses of diseases. This study has been conducted to explore the haplotype frequencies formed by rs4626 and rs7221352 single-nucleotide polymorphisms (SNPs) in the coding region variant (rs4626) and 5' upstream region intron variant (rs7221352) of the transducer of the ERBB2.1 (TOB1) gene in individuals with relapsingremitting multiple sclerosis. Materials and Methods: Thirty patients with an Expanded Disability Status Scale (EDSS) score<3, 30 patients with EDSS≥5, and 30 healthy controls participated in the study. The TOB1 rs4626 T/C and rs7221352 G/A single-base variations were applied using the quantitative real-time polymerase chain reaction method in accordance with the TaqMan SNP Genotyping Assays instructions. Results: The genotype frequencies of TOB1 rs4626 TT/TC/CC were respectively 3.3%, 53.3%, and 43.3% in the EDSS<3 cases and 10%, 53.3%, and 36.7% in the EDSS≥5 cases. The genotype frequencies of TOB1 rs7221352 GG/AG/AA were respectively 3.3%, 86.7%, and 10% in the EDSS<3 cases and 10%, 70%, and 20% in the EDSS≥5 cases. With respect to the estimated values in the study cohort, allelic variant frequency was higher in the patient group for both SNP variants (p<0.001). Conclusion: The presence of variant alleles in the rs4626 and rs7221352 polymorphisms in TOB1 may have a role in the disease immunopathogenesis. Further investigations involving larger groups are required to understand the effects of TOB1.

___

  • 1. Daroff RB, Fenichel GM, Jankovic, J. Bradley’s Neurology in Clinical Practice. 6th ed. Philadelphia: Elsevier Saunders Publishing; 2012. p.693-7. google scholar
  • 2. Katsavos S, Anagnostouli M. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int 2013; 2013: 1-20. google scholar
  • 3. Lin S, Zhu Q, Xu Y, Liu H, Zhang J, Xu J, et al. The role of the TOB1 gene in growth suppression of hepatocellular carcinoma. Oncol Lett 2012; 4: 981-7. google scholar
  • 4. Salerno F, van Lier RAW, Wolkers MC. Better safe than sorry: TOB1 employs multiple parallel regulatory pathways to keep Th17 cells quiet. EurJ Immunol 2014;44:646-9. google scholar
  • 5. NCBI (2022) Variation Viewer database [online] https://www.ncbi. nlm.nih.gov/variation/view [accessed on October, 2022]. google scholar
  • 6. Ensembl (Release 107-2022). Ensembl database, Human (GRCh38. p13) build [online] https://www.ensembl.org/Homo_sapiens/Vari-ation, [accessed on October, 2022]. google scholar
  • 7. Ensembl (Release 107-2022). Ensembl database, Human (GRCh38. p13) build [online] https://m.ensembl.org/info/genome/funcgen/ regulatory_build.html, [accessed on October, 2022]. google scholar
  • 8. O’Malley S, Su H, Zhang T, Ng C, Ge H, Tang CK. TOB suppresses breast cancer tumorigenesis. Int J Cancer 2009; 125: 1805-13. google scholar
  • 9. Park GT, Seo EY, Lee KM, Yang JM. Tob is a potential marker gene for the basal layer of the epidermis and is stably expressed in human primary keratinocytes. Br J Dermatol 2006; 154: 411-8. google scholar
  • 10. Iwanaga K, Sueoka N, Sato A, Sakuragi T, Sakao Y, Tominaga M, et al. Alteration of expression or phosphorylation status of tob, a novel tumor suppressor gene product, is an early event in lung cancer. Cancer Lett 2003; 202: 71-9. google scholar
  • 11. Jiao Y, Sun KK, Zhao L, Xu JY, Wang LL, Fan SJ. Suppression of human lung cancer cell proliferation and metastasis in vitro by the transducer of ErbB-2.1 (TOB1). Acta Pharmacol Sin 2012; 33: 25060. google scholar
  • 12. Kundu J, Wahab SMR, Kundu JK, Choi YL, Erkin OC, Lee HS, et al. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting ß-catenin signaling. Int J Oncol 2012;41:839-48. google scholar
  • 13. Gebauer M, Saas J, Haag J, Dietz U, Takigawa M, Bartnik E, et al. Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage. Arthritis Res Ther 2005; 7: R274-84. google scholar
  • 14. Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AAFL, Delfs MW, Berezovskaya A, et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2001; 2: 1174-82. google scholar
  • 15. Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J, Ohsugi M, Onda M, Hirai M, et al. Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 1999; 18: 7432-41. google scholar
  • 16. Schulze-Topphoff U, Casazza S, Varrin-Doyer M, Pekarek K, Sobel RA, Hauser SL, et al. Tob1 plays a critical role in the activation of en-cephalitogenic T cells in CNS autoimmunity. J Exp Med 2013; 210: 1301-9. google scholar
  • 17. Tzachanis D, Boussiotis VA. Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle 2009; 8: 1019-25. google scholar
  • 18. Corvol JC, Pelletier D, Henry RG, Caillier SJ, Wang J, Pappas D, et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci USA 2008; 105: 11839-44. google scholar
  • 19. Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet 1955; 19: 251-3. google scholar
  • 20. Gene Calc-Szymon Miks, Jan Binkowski portal website, (2022), https://gene-calc.pl/hardy-weinberg-page, [accessed on November, 2022]. google scholar
  • 21. GTEx Portal website (2022), https://www.gtexportal.org/, [accessed on November, 2022]. google scholar
  • 22. Nielsen NM, Westergaard T, Rostgaard K, Frisch M, Hjalgrim H, Wohlfahr J, et al. Familial risk of multiple sclerosis: a nationwide cohort study. Am J Epidemiol 2005; 162: 774-8. google scholar
  • 23. Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet 2017; 33: 960-70. google scholar
  • 24. Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsa-pas C, Wong G, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019; 365: 1-25. google scholar
  • 25. Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Lar-reategui I, Quirant-Sánchez B, Fondelli F, et al. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy.Cell Mol Immunol 2021; 18:1353-74. google scholar
  • 26. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013; 45: 1353-60. google scholar
  • 27. Baranzini SE. The role of antiproliferative gene Tob1 in the immune system. Clin Exp Neuroimmunol 2014; 5: 132-6. google scholar
  • 28. Ensembl (Release 107-2022), rs4626 SNP ensemble genome browser information page, http://www.ensembl.org/Homo_sapi-ens/Variation/Explore?r=17:50862561- 50863561;v=rs4626;vdb=-variation;vf=87138538 [accessed on October, 2022]. google scholar
  • 29. Ensembl (Release 107-2022), rs7221352 SNP ensemble genome browser information page, http://www.ensembl.org/Homo_sapi-ens/Variation/Explore?r=17:50869364- 50870364;v=rs7221352;vd-b=variation;vf=88123893 [accessed on October, 2022]. google scholar
  • 30. Gresle MM, Jordan MA, Stankovich J, Spelman T, Johnson LJ, Laver-ick L, et al. Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells. Life Sci Alliance 2020; 3: 1-11. google scholar
European Journal of Biology-Cover
  • ISSN: 2602-2575
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1940
  • Yayıncı: İstanbul Üniversitesi Yayınevi
Sayıdaki Diğer Makaleler

Phenolic Extracts of Zizyphus lotus L. (Rhamnaceae) and Ruta chalepensis L. (Rutaceae) as Alternatives to Antibiotics and their Antimicrobial Effects on Clinical Multidrug-Resistant Pathogens

Nour El Houda BEKKAR, Meddah BOUMEDİENE, Yavuz Selim CAKMAK, Bahadır KESKİN, Pascal SONNET

Thioredoxin-Interacting Protein: The Redoxissome Complex in Glomerular Lesion

Gabriel PEREİRA, Emily Pereira DOS SANTOS, Maria Augusta RUY-BARBOSA, Sofía Tomaselli ARİONİ, Thabata Caroline De Oliveira SANTOS, Débora Tavares DE RESENDE E SİLVA, Juan Sebastian Henao AGUDELO, Maria Do Carmo Pinho FRANCO, Ricardo FERNANDEZ, Rafael Luiz PEREİRA, Danilo Cândido DE ALMEİDA

In Silico Analysis of BMAL1 and CLOCK SNPs in the Ensembl Database

Şeref GÜL

Emergence, Evolution and Economics of Coronaviruses

Sidhant JAİN, Meenakshi RANA, Pooja JAİN

Myrtus communis L. Extract Ameliorates High Fat Diet Induced Kidney and Bladder Damage by Inhibiting Oxidative Stress and Inflammation

Fatma KANPALTA MUSTAFAOĞLU, Büşra ERTAŞ, Ali ŞEN, Dilek AKAKIN, Göksel ŞENER, Feriha ERCAN

The Role of rs4626 and rs7221352 Polymorphisms on the TOB1 Gene in Turkish Relapsing-Remitting Multiple Sclerosis Patients

Fulya BAŞOĞLU KOSEAHMET, Candan EKER, Musa ÖZTÜRK, Şebnem ÖZDEMİR, Ayhan KÖKSAL, Sevim BAYBAS, Tuba GUNEL

Anti-Cancer Effects of Trigonella foenum in Neuroblastoma Cell Line

İrem ÜRKMEZ, Hatice İlayhan KARAHAN ÇÖVEN, Aslı ELDEM, Melek PEHLİVAN

Strigolactone and Auxin Applications on Cotyledon Senescence in Sunflower Seedlings under Salt Stress

Hümeyra ÖZEL, Serap SAĞLAM

New Records for Microalgae Species of the Turkish Seas Under the Effect of Intense Mucilage in the Sea of Marmara

Turgay DURMUŞ, Neslihan BALKIS-OZDELICE, Seyfettin TAŞ, Fatma BAYRAM PARTAL, Muharrem BALCI, Cem DALYAN, Mustafa SARI

Personalized Medicine: A Solution for Today and Tomorrow

Başak DALBAYRAK, Mustafa Doğukan METİNER