The Effect of Body Shape Type on Differentiability of Traditional and Geometric Morphometric Methods: A Case Study of Channa gachua (Hamilton, 1822)

The Effect of Body Shape Type on Differentiability of Traditional and Geometric Morphometric Methods: A Case Study of Channa gachua (Hamilton, 1822)

Objective: The morphological differences of two populations of the Dwarf snakehead, Channa gachua (Hamilton, 1822)from Sarbaz (Makran basin) and Halil (Hamun-e Jaz Murian basin) rivers were studied using geometric and traditionalmorphometrics (GM and TM) methods to test the hypothesis that the type of body shape can produce different results.Materials and Methods: A total of 16 landmark-points and 12 distance measurements were defined to analyse the bodyshape differences and the extracted data were analyzed using GM and TM methods.Results: Our findings reject the hypothesis, and the results revealed that GM is more effective in detecting meticulousmorphological differences.Conclusion: In addition, the results suggest selecting a proper method i.e. GM or TM, based on the degree of accuracyneeded i.e. if we need to find small shape differences within its signification, GM is a superior technique, or to show the typeof differences, then we can use TM.

___

  • 1. Ambrosio PP, Costa C, Sánchez P, Flos R. Stocking density and its influence on shape of Senegalese sole adults. Aqua Inter 2008; 16(4): 333.
  • 2. Jalili P, Eagderi S, Keivany Y. Body shape comparison of Kura bleak (Alburnus filippii) in Aras and Ahar-Chai rivers using geometric morphometric approach. Res Zool 2015; 5(1): 20-4.
  • 3. Karpouzi VS, Stergiou KI. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J fish biol 2003; 62(6): 1353-65.
  • 4. Loy A, Cataudella S, Corti M. Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. In Advances in morphometrics (1996; 399-405). Springer, Boston, MA.
  • 5. Smith TB, Skulason S. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu Rev Ecol Syst 1996, 111-33.
  • 6. Webb PW. Locomotor patterns in theevolution of actinopterygian fishes. Am Zool 1982; 22: 329-42.
  • 7. Mouludi Saleh A, Keivany Y, Jalali SAH. Biometry of Chub (Squalius namak Khaefi et al., 2016) in rivers of Namak Basin. J Experiment Anim Biol 2018; 7(1): 107-18.
  • 8. Radkhah A, Poorbagher H, Eagderi S. Investigation of morphological differences of Capoeta capoeta populations in the upstream and downstream of Zarinerood River in Urmia Lake Basin. J Anim Env 2016; 8(3): 167-74.
  • 9. Salehinia D, Eagderi S, Khorasani NA, Zamani-Faradonbeh M. Impact of Sangban Dam on the morphologicl chaactrestics of Siah mahi (Capoeta gracilis, keyserling, 1864) populations using traditional and geometric morphometrics techniques. J Anim Env 2016; 8(2): 97-104.
  • 10. Eagderi S, Esmaeilzadegan E, Madah A, Body shape variation in riffle minnows (Alburnoides eichwaldii De Filippii, 1863) populations of Caspian Sea basin. J Biosystem Taxon 2013; 5(14): 1-8.
  • 11. Eagderi S, Esmaeilzadegan E, Pirbeigi A. Morphological responses of Capoeta gracilis and Alburnoides eichwaldii populations (Cyprinidae) fragmented due to Tarik Dam (Sefidrud River, Caspian Sea basin, Iran). Iranian J Ichthyol 2014; 1(2): 114-20.
  • 12. Mouludi-Saleh A, Keivany Y. Morphological diversity in three species of Chubs (Squalius spp.) populations in Iranian Basins. Nova Biol Reperta 2018a; 5(2): 192-204.
  • 13. Mouludi-Saleh A, Keivany Y. Morphometric analysis of Squalius namak Khaefi et al. 2016 in Khaznagh and Ghare-Chai rivers. Sri Lanka J Aqua Sci 2018b; 23(2): 173-8.
  • 14. Nasri M, Eagderi S, Farahmand H, Segherloo IH, Body shape comparison of Cyprinion macrostomum (Heckel, 1843) and Cyprinion watsoni (Day, 1872) using geometric morphometric method. Inter J Aqua Biol 2013; 1(5): 240-4.
  • 15. Nasri M, Eagderi S, Keivany Y, Farahmand H, Dorafshan S, Nezhadheydari H. Morphological diversity of Cyprinion Heckel, 1843 species (Teleostei: Cyprinidae) in Iran. Iranian J Ichthyol 2018; 5(2): 96-108.
  • 16. Razavipour P, Eagderi S, Poorbagher H, Javanshir Khooi A, Keivany Y. Comparative study of morphological characteristics of Tuini fish (Capoeta damascina) in inland water of Iran using geometic morphometric method. J Fish 2015; 8(1): 79-90.
  • 17. Zamani Faradonbeh M, Eagderi S, Nasri M. Geometrics morphometric comparison of populations of waspi Cabdio morar (Hamilton, 1822) in Mashkil and Mokran basins. Iranian Sci Fish J 2014; 23(2): 57-67.
  • 18. Coad BW, Freshwater Fishes of Iran (Available at http://www. briancoad.com) (accessed on 4 March 2019).
  • 19. Elliott NG, K. Haskard JA. Koslow. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J Fish Biol 1995; 46:202-20.
  • 20. Zamani Faradonbe M, Eagderi S, Moradi M. Patterns of Body Shape Variation in Capoeta gracilis (Pisces: Cyprinidae) in Relation to Environmental Variables in Sefidrud River Basin, Iran. J Appl Biol Sci 2015; 9(1): 36-42.
  • 21. Langerhans RB, Layman CA, Langerhans AK, DeWitt TJ. Habitatassociated morphological divergence in two Neotropical fish species. Biol J Linn Soc 2003; 80: 689-98.
  • 22. Kassen B, Bell G. Experimental evolution in Chlamydomonas. IV. Selection in Environments that vary through time at different scales. Heredity 1998; 80:732-41.