Antioxidant Effects of Epigallocatechin Gallate in Cerulein-Induced Pancreatitis

Antioxidant Effects of Epigallocatechin Gallate in Cerulein-Induced Pancreatitis

Objective: Acute pancreatitis (AP) is an inflammatory disease of the pancreas resulting from auto-activation of digestiveenzymes and damage to the pancreatic parenchyma. Reactive oxygen species (ROS) play an important role in the progressionof AP. In the present study, we aimed to evaluate epigallocatechin-3 gallate (EGCG) in reducing the inflammatory reaction andtissue damage in experimental AP rat model.Materials and Methods: Amylase, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels were measured.Histopathological, immunohistochemical analyses of apoptotic cells, CD-8α and CD-68 were performed. Superoxide dismutase(SOD), catalase (CAT) and glutathione S-transferase (GST) were determined in hemolysates.Results: Cerulein+EGCG treatment did not cause decreases in the amylase levels. IL-6 levels decreased in cerulein+EGCG group,however, TNF-α levels increased. No changes were observed in SOD activity by EGCG treatment, CAT and GST activities increased.EGCG treatment caused severe edema, inflammation and fat necrosis after cerulein-induced pancreatitis. Apoptosis in pancreas,CD8-α and CD-68 positive cells increased in EGCG treatment after pancreatitis induction.Conclusion: It may be suggested that EGCG showed a pro-oxidant effect, in contrast to the expected in the pancreatitis modelwhen compared to a positive control. It can be concluded that overconsumption of EGCG should be avoided in pancreatitisconditions.

___

  • 1. Lei QC, Wang XY, Xia XF, Zheng HZ, Bi JC, Tian F, et al. The role of omega-3 fatty acids in acute pancreatitis: A meta-analysis of randomized controlled trials. Nutrients 2015; 7(4): 2261-73.
  • 2. Jha RK, Ma Q, Sha H, Palikhe M. Acute pancreatitis: a literature review. Med Sci Mon 2009; 15(7): RA147-RA56.
  • 3. Aranda-Narváez JM, González-Sánchez AJ, Montiel-Casado MC, Titos-García A, Santoyo-Santoyo J. Acute necrotizing pancreatitis: surgical indications and technical procedures. World J Clin Cases 2014; 2(12): 840.
  • 4. Elfar M, Gaber LW, Sabek O, Fischer CP, Gaber AO. The inflammatory cascade in acute pancreatitis: relevance to clinical disease. Surg Clin North Am 2007; 87(6): 1325-40.
  • 5. Saruç M, Yuceyar H, Turkel N, Ozutemiz O, Tuzcuoglu I, Ayhan S, et al. The role of heme in hemolysis-induced acute pancreatitis. Med Sci Mon 2007; 13(3): BR67-BR72.
  • 6. Wei M, Gong Y-J, Tu L, Li J, Liang Y-H, Zhang Y-H. Expression of phosphatidylinositol-3 kinase and effects of inhibitor wortmannin on expression of tumor necrosis factor-a in severe acute pancreatitis associated with acute lung injury. World J Emerg Med 2015; 6(4): 299.
  • 7. De Campos T, Deree J, Coimbra R. From acute pancreatitis to endorgan injury: mechanisms of acute lung injury. Surgical Infect 2007; 8(1): 107-20.
  • 8. Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol 2015; 209: 52-8.
  • 9. Tsuji N, Watanabe N, Okamoto T, Niitsu Y. Specific interaction of pancreatic elastase and leucocytes to produce oxygen radicals and its implication in pancreatitis. Gut 1994; 35(11): 1659-64.
  • 10. Yu JH, Kim H. Oxidative stress and inflammatory signaling in cerulein pancreatitis. World journal of gastroenterology: WJG 2014; 20(46): 17324.
  • 11. Babu BI, Malleo G, Genovese T, Mazzon E, Di Paola R, Crisafulli C, et al. Green tea polyphenols ameliorate pancreatic injury in ceruleininduced murine acute pancreatitis. Pancreas 2009; 38(8): 954-67.
  • 12. Su KH, Cuthbertson C, Christophi C. Review of experimental animal models of acute pancreatitis. HPB (Oxford). 2006; 8(4): 264-86.
  • 13. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
  • 14. Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M. Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid Med Cell Longev 2015; 2015.
  • 15. Erguder IB, Avci A, Devrim E, Durak I. Effects of cooking techniques on antioxidant enzyme activities of some fruits and vegetables. Turk J Med Sci 2007; 37(3): 151-6.
  • 16. Mekiňová D, Chorvathova V, Volkovova K, Staruchova M, Graňičová E, Klvanova J, et al. Effect of intake of exogenous vitamins C, E and Β‐carotene on the antioxidative status in kidneys of rats with streptozotocin‐induced diabetes. Mol Nutr Food Res 1995; 39(4): 257-61.
  • 17. Süloğlu AK, Girgin G, Selmanoğlu G, Balcı S, Baydar T. Possible effects of lycopene and silymarin on rat liver functions and oxidative stress markers. Turk J Biochem/Turk Biyokim Derg 2014; 39(3):344-50.
  • 18. Sureda A, Tejada S, Del Mar Bibiloni M, Antoni Tur J, Pons A. Polyphenols: well beyond the antioxidant capacity: polyphenol supplementation and exercise-induced oxidative stress and inflammation. Curr Pharm Biotechnol 2014; 15(4): 373-9.
  • 19. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 2010; 501(1): 65-72.
  • 20. Lin C-H, Chao L-K, Hung P-H, Chen Y-J. EGCG inhibits the growth and tumorigenicity of nasopharyngeal tumor-initiating cells through attenuation of stat3 activation. Int J Clin Exp Pathol 2014; 7(5): 2372.
  • 21. Yu H, Pardoll D, Jove R. Stats in cancer inflammation and immunity: a leading role for stat3. Nat Rev Cancer 2009; 9(11): 798-809.
  • 22. Mukherjee S, Siddiqui MA, Dayal S, Ayoub YZ, Malathi K. Epigallocatechin-3-gallate suppresses proinflammatory cytokines and chemokines induced by toll-like receptor 9 agonists in prostate cancer cells. J Inflamm Res 2014; 7: 89.
  • 23. Ramudo L, Manso MA. N-acetylcysteine in acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1(1): 21.
  • 24. Muià C, Mazzon E, Di Paola R, Genovese T, Menegazzi M, Caputi AP, et al. Green tea polyphenol extract attenuates ischemia/reperfusion injury of the gut. Naunyn-Schmiedebergs Arch Pharmacol 2005; 371(5): 364-74.
  • 25. Senthil Kumaran V, Arulmathi K, Srividhya R, Kalaiselvi P. Repletion of antioxidant status by EGCG and retardation of oxidative damage induced macromolecular anomalies in aged rats. Exp Gerontol 2008; 43(3): 176-83.
  • 26. Meng M, Li Y-Q, Yan M-X, Kou Y, Ren H-B. Effects of epigallocatechin gallate on diethyldithiocarbamate-induced pancreatic fibrosis in rats. Biol Pharm Bull 2007; 30 (6): 1091-6.
  • 27. Abdallah MF, Karacaoglu E, Girgin G, Kilicarslan B, Selmanoglu G, Baydar T. Influence of subacute melatonin treatment on antioxidant factors in the liver of female rats. J Exp App Anim Sci 2015; 1(3): 359-68.
  • 28. Yagci G, Gul H, Simsek A, Buyukdogan V, Onguru O, Zeybek N, et al. Beneficial effects of N-acetylcysteine on sodium taurocholateinduced pancreatitis in rats. J Gastroenterol 2004; 39(3): 268-76.
  • 29. Kim H. Cerulein pancreatitis: oxidative stress, inflammation, and apoptosis. Gut Liver 2008; 2(2): 74-80.
  • 30. Hyun JJ, Lee HS. Experimental models of pancreatitis. Clin Endosc 2014; 47(3): 212-6.
  • 31. Rodrigo R, Gil-Becerra D. Chapter 17 - Implications of polyphenols on endogenous antioxidant defense systems in human diseases. Polyphenols in Human Health and Disease. San Diego: Academic Press; 2014. p. 201-17.
  • 32. Fukui M, Kanoh M, Takamatsu Y, Arakawa Y. Analysis of serum catalase activities in pancreatic diseases. J Gastroenterol 2004; 39(5): 469-74.
  • 33. Rahman SH, Ibrahim K, Larvin M, Kingsnorth A, Mcmahon MJ. Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis. Gastroenterology 2004; 126(5): 1312-22.
  • 34. Pérez S, Pereda J, Sabater L, Sastre J. Redox Signaling in acute pancreatitis. Redox Biol 2015; 5: 1-14.
  • 35. Gomez-Cambronero LG, Sabater L, Pereda J, Cassinello N, Camps B, Vina J, et al. Role of cytokines and oxidative stress in the pathophysiology of acute pancreatitis: therapeutical implications. Curr Drug Targets Inflamm Allergy 2002; 1(4): 393-403.
  • 36. Mayer J, Rau B, Gansauge F, Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000; 47(4): 546-52.
  • 37. Javier E, Javier P, Alessandro A, Juan S, Luis S, Luis A, et al. Role of redox Signaling, protein phosphatases and histone acetylation in the inflammatory cascade in acute pancreatitis: therapeutic implications. Inflamm Allergy Drug Targets 2010; 9(2): 97-108.
  • 38. Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun 2015; 6: 7158.
  • 39. Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, Sandoval D, Gukovsky S, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 1997; 100(7): 1853-62.
  • 40. Elbling L, Weiss R-M, Teufelhofer O, Uhl M, Knasmueller S, Schulte- Hermann R, et al. Green tea extract and (–)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. The FASEB J 2005; 19(7): 807-09.
  • 41. Yang G-Y, Liao J, Li C, Chung J, Yurkow EJ, Ho C-T, et al. Effect of black and green tea polyphenols on c-Jun phosphorylation and H2O2 production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 2000; 21(11): 2035-9.
  • 42. Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspasedependent apoptosis in pancreatic cancer cells. Carcinogenesis 2005; 26(5): 958-67.
  • 43. Hayakawa F, Ishizu Y, Hoshino N, Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu2+. Biosci Biotechnol Biochem 2004; 68(9): 1825-30.
  • 44. Preedy VR. Tea in health and disease prevention: Academic Press; 2012.