Soğutma Kule Suyundan Elde Edilen SRB İzolatının Galvanizli Çelik Üzerinde Biyofilm Oluşturması

Çalışmada, laboratuvar ölçekli deney düzeneğinde, soğutma kule suyundan izole edilen sülfat indirgeyen bakteri (SRB) içeren anaerobik bakteri izolatının galvanizli çelik üzerinde biyofilm oluşturma yeteneği araştırılmıştır. Test kuponları 744 saat boyunca anaerobik bakteri izolatının içinde bırakılmıştır. SRB içeren anaerobik izolatının zaman içerisinde galvanizli çelik kuponlar üzerinde biyofilm oluşturabildiği saptanmıştır. İstatistiksel analizlere göre, sesil ve planktonik SRB sayılarının ortalamaları arasında anlamlı bir farkın olmadığı, bununla birlikte SRB sayıları arasında aynı yönde anlamlı bir ilişkinin olduğu tespit edilmiştir (P < 0.01). Test sistemindeki bakteri izolatının hücredışı karbonhidratı kullandığı belirlenmiştir

Biofilm formation on galvanized steel by SRB isolate obtained from cooling tower water

In this study, we investigated biofilm formation on galvanized steel coupons by anaerobic bacteria isolate including sulphate-reducing bacteria (SRB) isolated from cooling tower water in a lab-scaled experimental setup. The test coupons were exposed to the culture of anaerobic bacteria isolate during 744 hours. In the course of time, anaerobic bacteria isolate could form biofilm on galvanized steel coupons. According to the statistical analyses, there was no significant difference between sessile and planktonic SRB counts, while a positive correlation was found out between SRB counts (P
Keywords:

-,

___

  • American Society and Testing and Material (ASTM), (1975) Standard recommend practice for preparing, cleaning and evaluating corrosion test specimens, In: Annual book of ASTM standards, Designation: G1-72, American Society for Testing Materials, Philadelphia, 0300137510, pp.626-629.
  • Beech, I.B., Sunny Cheung, C.W., Patrıck Chan, C.S., Hill, M.A., Franco, R., Lino, A.R. (1994) Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphatereducing bacteria. International
  • Biodeterioration and Biodegradation, 34: 289–303.
  • Campbell, L.L, Postgate, J.R. (1965) Classification of the spore-forming sulfatereducing bacteria. Bacteriological Reviews, 29(3): 359–363.
  • Choudhary, S.G. (1998) Emerging microbial control issues in cooling water systems. Hydrocarbon Processing, 77(5): 91-102.
  • Cord-Ruwisch, R. (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfatereducing bacteria. Journal of Microbiological Methods, 4: 33-36.
  • Cotuk, A. (2003) Genel Mikrobiyoloji Laboratuvar Yöntemleri, Nobel Tıp Kitabevleri, İstanbul.
  • Denkhaus, E., Meisen, S., Telgheder, U., Wingender, J. (2007) Chemical and physical methods for characterization of biofilms. Microchimica Acta, 158: 1–27.
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
  • Ellwood, D.C., Keevil, C.W., Marsh, P.D., Brown, C.M., Wardell, J.N. (1982) Surfaceassociated growth. Philosophical Transactions of the Royal Society of London, Series B, 297: 517–532.
  • Feio, M.J., Beech, I.B., Carepo, M., Lopes, J.M., Cheung, C.W.S., Franco, R., Guezennec, J., Smith, J.R., Mitchell, J.I., Moura, J.J.G., Lino, A.R. (1998) Isolation and characterization of a novel sulphate reducing bacterium of the Desulfovibrio genus. Anaerobe, 4: 117-130.
  • Hamilton, W.A. (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology, 39: 195-217.
  • Hines, M.E., Visscher, P.T., Teske, A., Devereux, R. (2007) Sulfur Cycling, In: Hurst C.J. (ed), Manual of Environmental Microbiology, ASM Press, Washington, D.C., 9781555813796, pp. 497-510.
  • Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T., (1994) Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, USA, 0683006037.
  • Ilhan-Sungur, E., Cotuk, A. (2010) Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corrosion Science, 52(1): 161-171.
  • Ilhan-Sungur, E., Cansever, N., Cotuk, A. (2007) Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corrosion Science, 49: 1097-1109.
  • James, G.A., Beaudette, L., Costerton, J.W. (1995) Interspecies bacterial interactions in biofilms. Journal of Industrial Microbiology, 15: 257–62.
  • Kaksonen, A.H., Spring, S., Schumann, P., Kroppenstedt, R.M., Puhakka, J.A. (2007) Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfatereducer isolated from a sulfidogenic fluidized-bed reactor. International Journal of Systematic and Evolutionary Microbiology, 57: 1089-1094.
  • O'Flaherty, V., Mahony, T., O'Kennedy, R., Colleran, E. (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry, 33(5): 555-569.
  • Postgate, J.R. (1984) The sulphate reducing bacteria, 2nd ed., Cambridge University Press, Cambridge, 0521257913.
  • Sass, H., Overmann, J., Rütters, H., Babenzien, H.-D., Cypionka, H. (2004) Desulfosporomusa polytropa gen. nov. sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. Archives of Microbiology, 182: 204–211.
  • Stackebrandt, E., Sproer, C., Rainey, F.A., Burghardt, J., Pauker, O., Hippe, H. (1997) Phylogenetic Analysis of the Genus Desulfotomaculum: Evidence for the Misclassification of Desulfotomaculum guttoideum and Description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb.nov. International Journal of Systematic Bacteriology, 47(4): 1134-1139.
  • Zhang, X., Bishop, P.L., Kinkle, B.K. (1999) Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Science and Technology, 39 (7): 211-218.
  • Zhang, X., Bishop, P.L. (2003) Biodegradability of biofilm extracellular polymeric substances. Chemosphere, 50: 63–69.