İki Arpa Varyetesinde Tuzluluğun Etkisiyle Oluşan Değişimlerin Karşılaştırılması

Tuzluluğun in vitro ortamdaki etkileri 2 arpa varyetesinde (Hordeum vulgare cv. Bornova-92 and Hilal) karşılaştırıldı. Olgun embriyolar 0, 50 ve 100 mM NaCl içeren Murashige ve Skoog besiortamında 20 gün boyunca kültüre alındı. NaCl uygulaması maksimum sürgün boyunu, total çözünebilir protein ve DNA içeriğini her 2 varyetede de azaltırken; maksimum kök uzunluğunu Hilal varyetesinde azalttı. Taze ve kuru ağırlıktaki ve su içeriğindeki değişimler istatistik olarak anlamlı bulunmadı. İnhibe edici etkiler Hilal varyetesinde daha belirgindi. Tuzluluk her 2 varyetede de genotoksik etki oluşturmamasına karşın Bornova-92 varyetesinde protein profilini biraz etkiledi. Tuzluluk, Bornova-92 varyetesinde sitozin metilasyonunu CCG’den CG olacak şekilde etkilerken; Hilal varyetesinde CG’den CCG olacak şekilde etkiledi. Bornova-92 ve Hilal, sırayla tuza dayanıklı ve duyarlı olarak tanımlanabilir ve Bornova-92’nin görece tuzluluk dayanıklılığı sitozin metilasyon profilinden ve/veya protein sentezinin düzenlenmesinden kaynaklı olabilir.

Comparison of Salinity-Induced Changes in Two Cultivars of Barley

In vitro effects of salinity were compared in two cultivars of barley (Hordeum vulgare cv. Bornova-92and Hilal). Mature embryos were cultured on Murashige and Skoog media supplemented with 0, 50and 100 mM NaCl for 20 days. NaCl-treatment decreased maximum shoot length, total soluble proteinand DNA contents in both cultivars but decreased maximum root length in Hilal. Changes in fresh anddry weight and water content were not statistically-significant. Inhibitory effects were more dramatic inHilal. Salinity did not cause genotoxic effects in both cultivars yet slightly affected protein patterns inBornova-92. However, salinity altered cytosine methylation patterns from CCG to CG in Bornova-92,from CG to CCG in Hilal. Bornova-92 and Hilal may be regarded as salt-tolerant and salt-susceptible,respectively and the relative salt-tolerance of Bornova-92 may be due to cytosine methylation patternsand/or regulation of protein synthesis.

___

  • and Depledge M. (2000) Optimized
  • RAPD analysis generates high-quality
  • genomic DNA profiles at high annealing
  • temperature. Biotechniques, 28: 52-54. Aydin S. S., Gokce E., Buyuk I. and Aras
  • S. (2012) Characterization of stress
  • induced by copper and zinc on cucumber
  • (Cucumis sativus L.) seedlings by means
  • of molecular and population parameters.
  • Mutation Research, 746: 49-55. Ben-Hattar J., Beard P. and Jiricny J. (1989)
  • Cytosine methylation in CTF and Sp1
  • recognition sites of an HSV tk promoter:
  • effects on transcription in vivo and on
  • factor binding in vitro. Nucleic Acids
  • Research, 17: 10179-10190. Cai Q., Guy C. L. and Moore G. A. (1996)
  • Detection of cytosine methylation and
  • mapping of a gene influencing cytosine
  • methylation in the genome of Citrus.
  • Genome 39: 235-242. Clark S. J., Harrison J. and Molloy P. L. (1997)
  • Sp1 binding is inhibited by mCpmCpG
  • methylation. Gene, 195: 67-71.
  • Gozukirmizi N. (2013) Genetic and
  • epigenetic effects of salinity on in vitro
  • growth of barley. Genetics and Molecular
  • Biology, 36: 566-570. Fatehi F., Hosseinzadeh A., Alizadeh H.,
  • Brimavandi T. and Struik P.C. (2012) The
  • proteome response of salt-resistant and
  • salt-sensitive barley genotypes to long
  • term salinity stress. Molecular Biology
  • Reports 39: 6387-6397. Fernandez E., Figueiras M. and Benito C. (2002)
  • The use of ISSR and RAPD markers for
  • detecting DNA polymorphism, genotype
  • identification and genetic diversity among
  • barley cultivars with known origin.
  • Theoretical and Applied Genetics 104: 845-851. Hernandez J. A., Corpas F. J., Gomez M., del
  • Rio L. A. and Sevilla F. (1993) Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria.
  • Physiologia Plantarum, 89: 103-110. Hu Y. and Schmidhalter U. (2005) Drought
  • and salinity: A comparison of their effects
  • on mineral nutrition of plants. Journal of
  • Plant Nutrition and Soil Science, 168: 541- 549. Imlay J. A. (2003) Pathways of oxidative
  • damage. Annual Reviews of Microbiology, 57: 395-418. Laemmli U. K. (1970) Cleavage of structural
  • proteins during the assembly of the head of
  • bacteriophage T4. Nature, 227: 680-685. Liu T., Van Staden J. and Cress W. A. (2000)
  • Salinity induced nuclear and DNA
  • degradation in meristematic cells of Temel A. and Gozukirmizi N. (2012) Effects of
  • soybean (Glycine max (L.)) roots. Plant
  • Growth Regulation, 30: 49-54. Liu W., Li P. J., Qi X. M., Zhou Q. X., Zheng
  • L., Sun T. H. and Yang Y. S. (2005) DNA
  • changes in barley (Hordeum vulgare)
  • seedlings induced by cadmium pollution
  • using RAPD analysis. Chemosphere, 61: 158-167. Lu G., Xiaoming W., Biyun C., Gao G. and
  • Kun X. (2007) Evaluation of genetic Yumurtaci A., Vardar F. and Unal M. (2007)
  • and epigenetic modification in rapeseed
  • (Brassica napus) induced by salt stress.
  • Journal of Integrative Plant Biology, 49: 1599-1607. Peng H. and Zhang J. (2009) Plant genomic
  • DNA methylation in response to stresses:
  • Potential applications and challenges
  • in plant breeding. Progress in Natural
  • Science, 19: 1037-1045. Pesserakli M., Tucker T. C. and Nakabayaski
  • K. (1991) Growth response of barley
  • and wheat to salt stress. Journal of Plant
  • Nutrition, 14: 331-340. Rasoulnia A., Bihamta M. R., Peyghamberi
  • S.A., Alizadeh H. and Rahnama A. (2011)
  • Proteomic response of barley leaves to
  • salinity. Molecular Biology Reports, 38: 5055-5063. Sairam R. K. and Srivastava G. C. (2002)
  • Changes in antioxidant activity in sub
  • cellular fractions of tolerant and susceptible
  • wheat genotypes in response to long term
  • salt stress. Plant Science, 162: 897-904. Tan M. (2010) Analysis of DNA methylation of
  • maize in response to osmotic and salt stress
  • based on methylation-sensitive amplified
  • polymorphism. Plant Physiology and
  • Biochemistry, 48: 21-26.
  • homobrassinolide in barley callus culture.
  • Plant Soil and Environment 58: 441-445., Temel A., Kartal G. and Gozukirmizi N. (2008)
  • Genetic and epigenetic variations in
  • barley calli cultures. Biotechnology and
  • Biotechnological Equipment, 22: 911-914. Tuteja N. (2007) Mechanisms of high
  • salinity tolerance in plants. Methods in
  • Enzymology, 428: 419-438.
  • Inhibition of barley root growth by
  • actinomycin D: Effects on mitotic activity,
  • protein content and peroxidase activity.
  • Fresenius Environmental Bulletin, 16: 917-921. Zhang H. X. and Blumwald E. (2001)
  • Transgenic salt-tolerant tomato plants
  • accumulate salt in foliage but not in fruit.
  • Nature Biotechnology, 19: 765-768. Zhu J. K. (2001) Plant salt tolerance. Trends in
  • Plant Science, 6: 66-71.