A Preliminary Metabarcoding Study of Prokaryotes inGökçeada Salt Lake Lagoon, Turkey

A Preliminary Metabarcoding Study of Prokaryotes inGökçeada Salt Lake Lagoon, Turkey

Objective: Microorganisms play an important role in all ecosystem processes and a growing body of molecular and ecological evidence has shown that microbial biodiversity is much more diverse and complex than previously anticipated. This study aimed to determine the prokaryotic microorganisms present in Gökçeada Salt Lake Lagoon.Materials and Methods: A metabarcoding approach was used to determine the microbial diversity in Gökçeada Salt Lake Lagoon.Results: 16S rDNA targeted sequencing revealed 5 Archaea and 31 Bacteria species and Archaea represented 63.2%. The most frequent Archaea genus was Halorubrum, which belongs to the Euryarchaeota phylum, and the dominant species of Bacteria was Halomonas sulfidaeris (Proteobacteria phylum).Conclusion: This work will contribute to our understanding of the microbial community structure and composition in coastal lagoons. Hovewer, further surveys will improve our knowledge on microbiota in Gökçeada Salt Lake Lagoon.

___

  • 1. Wardle DA. Communities and ecosystems: Linking the above‐ ground and below‐ground components. Princeton, NJ: Princeton University Press; 2002.
  • 2. Leininger S, Urich T, Schloter M, Schwark L, Qi JW, Nicol G, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006; 442: 806-9.
  • 3. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 2006; 103: 12115-20.
  • 4. Aslan H, Gonulal O, Can-Yilmaz E, Elipek B, Baytut O, Tosunoglu M, et al. Species diversity in lentic, lotic, marine and terrestrial biotopes of Gokceada Salt Lake Wetland (Canakkale, Turkey). Fresenius Environ Bull 2018; 5: 2853-66.
  • 5. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 2012; 21: 2045-50.
  • 6. Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 2012; 7: e48289.
  • 7. Pavan-Kumar A, Gireesh-Babu P and Lakra WS. DNA Metabarcoding: A new approach for rapid biodiversity assessment. J Cell Sci Mol Biol 2015; 2: 111.
  • 8. Abdelfattah A, Malacrinò A, Wisniewski M, Cacciola SO, Schena L. Metabarcoding: a powerful tool to investigate microbial communities and shape future plant protection strategies. Biol Control 2017; 120: 1-10.
  • 9. Bassler-Veit B, Barut IF, Merc E, Avsar N, Nazik A, Kapan-Yesilyurt S, et al. Distribution of microflora, meiofauna, and macrofauna assemblages in the hypersaline environment of northeastern Aegean Sea coasts. J Coast Res 2013; 29: 883-98.
  • 10. Amaral-Zettler LA, McCliment EA, Ducklow HW, and Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS One 2009; 4: e6372.
  • 11. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012; 6: 1621-4.
  • 12. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2016; 1: e00009-15.
  • 13. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes S. DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13: 581-3.
  • 14. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. QIIME allows analysis of high throughput community sequencing data. Nat Methods 2010; 7: 335-6.
  • 15. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019; 37: 852-7.
  • 16. Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods 2013; 10: 996-8.
  • 17. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42: 643-8.
  • 18. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform 2011; 12: 385.
  • 19. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep 2011; 1: 135.
  • 20. Fernandez AB, Ghai R, Martin-Cuadrado AB, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 2014; 88: 623-35.
  • 21. Oren A. Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. New York: Springer; 2011. p. 263-82.
  • 22. Simachew A, Lanzén A, Gessesse A, Øvreås L. Prokaryotic community diversity along an increasing salt gradient in a soda ash concentration pond. Microb Ecol 2016; 71: 326-38.
  • 23. Mutlu MB, Martinez-Garcia M, Santos F, Pena A, Guven K, Anton J. Prokaryotic diversity in Tuz Lake, a hypersaline environment in inland Turkey. FEMS Microbiol Ecol 2008; 65: 474-83.
  • 24. Mutlu MB, Guven K. Bacterial diversity in Çamaltı Saltern, Turkey. Pol J Microbiol 2015; 64: 37-45.
  • 25. Elevi Bardavid R, Ionescu D, Oren A, Rainey FA, Hollen BJ, Bagaley DR, et al. Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologica 2007; 576: 3-13.
  • 26. Anton J, Pena A, Santos F, Martinez-Garcia M, Schmitt-Kopplin P, Rossello-Mora R. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst. 2008; 4: 15.
European Journal of Biology-Cover
  • ISSN: 2602-2575
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1940
  • Yayıncı: İstanbul Üniversitesi Yayınevi
Sayıdaki Diğer Makaleler

Variation of Response Patterns Associated with an AvirulentPlant Symbiont Directed Defense Gene Expressions inMaize Exposed to Toxic Elements

Necla PEHLİVAN

Exercise and Caloric Restriction Improves Liver Damage inMetabolic Syndrome Model

Burçin Alev TÜZÜNER, Ayşen YARAT, Ünsal Veli ÜSTÜNDAĞ, Ebru EMEKLİ ALTURFAN, Nevin GENÇ KAHRAMAN, Hazal İPEKÇİ, Tuğba TUNALI AKBAY, Göksel ŞENER

Elias ADIKWU, James KEMELAYEFA

Tümer Orhun AYKUT, Neslihan BALKIS, Turgay DURMUŞ, Cüneyt Nadir SOLAK

The Effects of a Probiotic (Bacillus clausii) in Acute KidneyInjury in a Rat Model of LPS-Induced Endotoxemia

Aslı KANDİL

A Preliminary Metabarcoding Study of Prokaryotes inGökçeada Salt Lake Lagoon, Turkey

Sibel KÜÇÜK YILDIRIM

Evaluation of the Relationship between Epiphytic Diatomsand Water Quality Parameters in the BüyükçekmeceReservoir

Cüneyt Nadir SOLAK, Tümer Orhun AYKUT, Turgay DURMUŞ, Neslihan BALKIS ÖZDELİCE

Anatomy and Histology of Digestive Tract in Melanophila(Trachypteris) picta decastigma (Fabricius, 1787)(Coleoptera: Buprestidae)

Üzeyir ÇAĞLAR, Selami CANDAN, Nurcan ÖZYURT KOÇAKOĞLU

Differential Effects of Bisphenol A and Di (2-Ethylhexyl)Phthalate Exposure on Crestin and the Expression of SomeGenes Related to Apoptosis and Inflammation in ZebrafishEmbryos

Ünsal Veli ÜSTÜNDAĞ, Perihan Seda ATEŞ KALKAN, Ebru EMEKLİ ALTURFAN, Tuğçe AYIK

Acyclovir-Induced Nephrotoxicity: The Protective Benefit ofCurcumin

Elias ADIKWU, James KEMELAYEFA