Kompozit rezinin yüzey sertlik değerleri üzerine farklı ışık cihazlarının etkisi

Bu çalışmanın amacı; halojen standart ışık cihazı, halojen turbo uçlu ışık cihazı, LED ışık cihazı ve Plazma Ark ışık cihazı olmak üzere farklı ışık cihazlarıyla polimerize edilen farklı kalınlıktaki nanohibrit kompozit rezinin yüzey sertliğini değerlendirmektir. Bu amaçla 2 mm, 3 mm ve 4mm kalınlıktaki pleksiglass kalıplar üzerinde 5 mm çapında toplam 210 adet yuva hazırlandı ve yuvalara kompozit rezin uygulandı. Üst yüzeyleri önce matriks bant sonra 1 mm kalınlığında bir mikroskop camı ile kapatılarak fazla materyalin uzaklaşması için basınç uygulandı. Bu şekilde hazırlanan örneklerden 2 mm kalınlıkta olanlardan 10 tanesine halojen standart ışık cihazı ile 40 s, 10 tanesine halojen turbo uç ile 10 s, 10 tanesine LED ışık cihazı ile 10 s, 10 tanesine LED ışık cihazı ile 20 s, 10 tanesine PAC ışık cihazı ile 3 s, 10 tanesine PAC ışık cihazı ile 6 s ve 10 tanesine de PAC ışık cihazı ile 10 s süreyle ışık uygulandı. Aynı işlem 3 mm ve 4 mm kalınlıktaki örnekler için tekrarlandı. Tüm örnekler için ışık cihazının ucu cam tabakaya temas edecek şekilde tutularak standardizasyon sağlandı. Işıkla polimerizasyonu takiben matriks bantlar çıkarıldı ve diskler yardımıyla bitirme ve cila işlemleri uygulandı. Örnekler kalınlıklarına göre 3 gruba ayrıldı, gruplar da kendi içinde ışık cihazı ve polimerizasyon sürelerine göre 10 adet örnek olacak şekilde 7 gruba ayrıldı. Bütün deney gruplarındaki örnekler ışığı geçirmeyecek şekilde özellikle kahverengi cam şişelere yerleştirilerek 37°C’de etüvde 1 hafta kuru hava ortamında bek

Effect of Different Light Curing Units on the Surface Hardness of a Composite Resin

The aim of this study was to evaluate the effect of various light curing units such as; Quartz Tungsten Halogen light curing unit with standard tip and turbo tip, LED curing unit and Plasma Arc curing unit on surface hardness of a nanohybrid composite. 210 Standard holes, each 2 mm, 3 mm and 4mm in thickness and 5 mm in diameter were prepared on plexiglass molds and were fılled with a nanohybrid composite resin. Top surface of each speciment was covered with a matrix strip, 1 mm thick glass slide was placed over the matrix strip and pressure was applied to extrude excess material. 10 specimens in 2 mm thickness were polymerized with halogen curing unit with standard tip for 40 seconds. 10 specimens were cured with halogen curing unit with turbo tip for 10 seconds. 10 specimens were cured with LED curing light for 10 sec. whereas 10 specimens were cured with LED curing light for 20 seconds. 10 specimens were cured with PAC curing unit for 3 sec, 10 specimens were cured with PAC curing unit for 6 sec and 10 specimens were cured with PAC curing unit for 10 seconds. Same procedure was applied to the specimens in 3 mm and 4 mm thickness. The light source tip of the curing units were positioned directly over the glass slide for standardization. After light curing, the glass cover and matrix strips were removed and the top surface of each specimen was finished and polished with disks. The specimens were divided into 3 groups according to thickness, then each group was assigned into 7 groups each containing 10 specimens according to the different curing units and polymerization periods. All specimens were placed into dark colored glass containers and were stored at 37°C for one week. After the storing period, composite specimens were washed with distilled water and blotted dry. Surface hardness measurements were made by using Vickers surface hardness measuring device from three different points on the top and bottom surfaces of each specimen. The Vickers hardness of the specimens were recorded and the average values were calculated. The results obtained were subjected to statistical analysis using Kruskal Wallis one-way ANOVA and Mann Whitney Multiple Range test at a significance level of p

___

  • Craıg, RG, Powers, JM. (2002). Re- storative dental materials. llth Ed. St. Louis: The C.V. Mosby Co., p.: 231-257.
  • Jackson, R.D., Morgan, M. The new posterior resins and a simplifled placement tecnique. JADA, 2000; 131: 375-83.
  • Mılls, RW, Jandt KD, AshworthSH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999;24:388-91.
  • Yoon TH, Lee YK, Lim, BS, KimCW. Degree of polymerization of resin composites by different light sources. J Oral Rehabil2002; 29: 1165-73.
  • Yap AUJ. Effectiveness of polymeri- zation in composite restoratives claiming bulk placement: impact of cavtty depth and expo- sure time. Oper Dent 2000; 25: 113-20.
  • Rueggeberg FA, MargesonDH. The ef- fect of oxygen inhibition on an unfılled/filled composite system. J Dent Rest 1990; 69: 1652-8.
  • Dıetschi D, Marret N, Krejci, I. Com- parative efficiency of plasma and halogen light sources on composite microhardness in differ- ent curing conditions. Dent Mater 2003; 19: 493-500.
  • Rueggeberg FA, Craig RG. Correlation of parameters used tp estimate monomer con- version in a light cured composite. J Dent Res, 1988; 67: 932-7.
  • Cohen ME, Leonard DL, Charlton DG, Roberts HW, Ragain JC. Statistical estimation of resin composite polymerization suffıciency using microhardness. Dent Mater2004; 20: 158-66.
  • Sonugelen M, Artunç C, Güngör MA. Farklı yöntemlerle polimerize edilen estetik restoratif materyallerde aşınma ve sertliğin incelenmesi. EÜ Diş Hek Fak Derg2000; 21: 1-10.
  • Van Noort R (2002). Introduction to dental materials 2nd Ed. London, England: Mosby Int. Pub. Ltd., p.: 96-123.
  • Rawls Kj. (2003). Mechanical proper- ties of dental materials in: Phillips' Science Of Dental Materials llth Ed Ed: ANUSAVICE, KJ. St. Louis: W.B. Saunders, p.: 69-143.
  • Sturdevant CM, Roberson TM, Hey- mann HO, Sturdevant JR (1995). The art and science of operative dentistry. 3rd Ed. St. Lou- is: Mosby-Year Book Inc., p. : 252-263.
  • KancaJ. Visibte light activated compo- site resins for posterior use-A comparison of surface hardness and uniformity of cure. Up- date. Quintessence Int 1985; 16: 687-90.
  • Pires JA, Cvitko E, Denehy GE, Swift EJ. Effects of curing tip distance on light in- tensity and composite resin microhardness. Quintessence Int 1993; 24: 517-21.
  • Halvorson RH, Erickson RL, Davidson CL. Polymerization effıciency of curing lamps: a universal energy conversion relationship pre- dictive of conversion of resin based composite. Oper Dent 2004; 29: 105-11.
  • Yoon TH, Lee YK, Lim BS, Kim CW. Degree of polymerization of resin composites by different light sources. J Oral Rehabil 2002; 29: 1165-73.
  • Micali B, Basting RT. Effectiveness of composite resin polymerization using light- emitting diodes (LEDs ) or halogen-based light-curing units. Braz Oral Res2004; 18: 266- 70.
  • Nomoto R, Mc Cabe JF, Hirano S. Comparison of halogen, plasma and LED cur- ing units. Oper. Dent 2004; 29: 287-94.
  • Bennett AW, Watts DC. Performance of two blue light emitting diode dental light curing units with distance and irradiation time. Dent Mater2004; 20: 72-9.
  • Bala O, Üçtaşlı MB, Tüz MA. Barcol hardness of different resin based composites cured by halogen or light emitting diode (LED). Oper Dent2005; 30: 69-74.
  • Jandt KD, Mills RW, Blackwell GB, Ashworth SH. Depth of cure and compressive strength of dental composites cured with blue emitting diodes (LEDs). Dent Mater 2000; 16: 41-7.
  • Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerisa- tion of dental composites: flexural properties and polymerisation potential. Biomaterials 2000; 21: 1379-85.
  • Kurachi C, Tuboy AM, Magalhaes DV, Bagnato VS. Hardness evulation of a den- tal composite polymerized with experimental LED-based devices. Dent Mater 2001; 17:309- 15.
  • Knezevic A, Tarle Z, Meniga A, Su- talo J, Pichler G, Ristic M. Degree of conver- sion and temperature rise during polymeriza- tion of composite resin samples with blue di- odes. J Oral Rehabil 2001; 28: 586-91.
  • Dunn WJ, Bush AC. A comparison of polymerization by light-emitting diode and halogen-based light-curing units. JADA 2002; 133: 335-41.
  • Price RB, Felix CA, Andreou P. Evu- lation of second generation LED curing light. J Can Dent Assoc 2003; 69: 666-75.
  • Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymer- ized with plasma arc curing units. Dent Mater 2000; 16: 330-6.
  • Stritikus J, Owens B. An in vitro study of microleakage of occlusae composite restorations polymerized by a conventional curing light and a PAC curing light. J Clin Pe- diatr Dent 2000; 24: 221-7.
  • Tarle Z, Meniga A, Ristic M. The ef- fect of the photopolymerization method on the quality of composite resin samples. J Oral Re- habil1998;25: 436-42.
  • Fortin D, Vargas MA. The spectrum of composites:new techniques and materials. J Am Dent Assoc 2000; 131:26-30.
  • Rahiotis C, Kakaboura A, Loukidis M, Vougiouklakis G. Curing effîciency of var- ious types of light curing units. Eur J Oral Sel2004; 112: 89-94.
  • Correr AB, Sinhoreti MAC, Sobrinho LC, Tango RN, Schneider LFJ, ConsaniS. Ef- fect of the increase of energy density on knoop hardness of dental composites light-cured by conventional QHT,LED and Xenon Plasma Arc. Braz Dent J 2005; 16:218-24.
  • Rueggeberg FA, Caughman WF, Cur- tis Jr JW, Davis HC. Factors affecting cure at depths within light-activated resin composites. Am J Dent 1993; 6:91-5.
  • Rueggeberg FA, Caughman WF, Cur- tis JW. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994; 19: 26-32.
  • Sakaguchi RL, Berge HX. Reduced light energy densitiy decreases post-gel con- traction while maintaining degree of conver- sion in composites. J Dent 1998; 26:695-700.
  • Munksgaard EC, Peutzfeldt A, Asmus- sen E. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sel 2000; 108: 341-5.