KLİNİK KULLANIM SONRASI Nİ-Tİ DÖNER ALETLERDEKİ DEFEKTLERİN ARAŞTIRILMASI

Amaç: Bu çalışmanın amacı, Ni-Ti döner aletlerdeki kırık ve deformasyonların tiplerini ve konumlarınıstereomikroskop kullanarak araştırmaktır. Gereç ve Yöntem: Altı aylık süreç içerisinde endodonti kliniğinde kırık veya deformasyon sebebiyle klinik kullanımdan çıkarılmış olan Protaper Universal (PTU), Protaper Universal Retreatment (PTUR) ve PathFile (PF) eğelerden oluşan toplam 354 adet Ni-Ti eğe çalışmaya dahil edilmiştir. Defekt tipleri; Tip 1: kırık, Tip 2: eğenin sarmallarının açılması/burulması, Tip 3: eğede eğilme veya bükülme bulunması ve Tip 4: eğede gözle görülür bir defekt olmaması şeklinde sınıflandırılıp kaydedilmiştir. Kırık bulunan Ni-Ti döner aletlerde kırık yüzeyinin özelliklerine göre torsiyonel kırık ve fleksural kırık olmak üzere iki alt grupta kategorize edilmiştir. Kırıkların alet üzerindeki konumları her bir alet tipi için ayrıca kaydedilmiştir. Aletlerin tümü x45 büyütmede led ışık altında stereomikroskopta (Olympus SZ61, Japan) analiz edilmiştir. Bulgular: Stereomikroskopta incelen tüm eğelerde en sık görülen defekt tipi kırık (% 36,1) olmuştur. İncelenen toplam 292 adet PTU eğe içerisinde en çok görülen defekt S1 numaralı PTU eğelerde gözlemlenmiştir (%17.1). Toplam 47 adet PF eğe içerisinde en çok defekt 013 numaralı PF eğelerde gözlemlenmiştir (%38.2). Toplam 15 adet PTUR eğe içerisinde en çok defekt D1 ve D2 numaralı eğelerde gözlemlenmiştir (%20, %20). En sık gözlemlenen kırık tipi fleksural kırık olup PTU, PF ve PTUR eğelerde sırasıyla %92.3, %68.4 ve %100 oranlarında gözlemlenmiştir. Kırıkların konumları değerlendirildiğinde; PTU, PF ve PTUR eğelerinin D0 noktasından sırasıyla ortalama 3.74 mm, 4.21 mm ve 1.85 mm uzaklıkta kırıkların gerçekleştiği bulunmuştur. Sonuç: Kök kanal genişletilmesi sırasında meydana gelen alet kırıkları endodontik tedavinin başarısını olumsuz yönde etkilemektedir. Aletleri üretici firmanın talimatlarına göre kullanmak ve her kullanımdan sonra oluşabilecek deformasyonları tespit etmek amacıyla aletleri incelemek prosedürel hataları en aza indirmeyi sağlayacaktır.

Investigation of Defects After Clinical Use Ni-Ti Rotary Files

Aim: The aim of this study was to determine the type and position of defects and fractures observed on Ni-Ti rotary instruments by stereomicroscope. Materials and Method: Three hundred and fifty-four (354) Protaper Universal(PTU), Protaper Universal Retreatment (PTUR) and Path File (PF) rotary discarded files which had fracture and defects were collected from endodontic clinic during last six months. The type of deformation of files was classified into 4 subgroups: Type 1: fracture, Type 2: unwinding, Type 3: Curving/bending and Type 4: no visible defects. The fractured files were examined longitudinally and categorized into torsional or flexural failure. The position of the fracture on the file was recorded for each file type, separately. All files examined under a stereomicroscope (OlympusSZ61, Japan) at x45 magnification with led illumination. Results: The stereomicroscope evaluation of all files revealed that the major defect was fracture (36.1% of all files). The most common defects in PTU files (n:292) were observed in S1 files (17.1%). Among the PF files (n: 47), the most defects were observed in #013 PF files(37.2%). The highest number of defectsin PTUR files(n: 15) were observed in files D1 and D2 (20%, 20%). Flexural fracture was the most frequently fracture type and it occurred in 92.3% of PTU files, 68.4% of PF files and 100% of PTUR files. According to the evaluation offracture location; it was found that the fractures occurred ata mean distances of 3.74 mm, 4.21 mm and 1.85 mm from the D0 point of the PTU, PF and PTUR files, respectively. Conclusion: Instrument fractures during root canal preparation might impact the outcome of endodontic treatment. Using the instruments according to the manufacturer’s instructions and monitoring the instruments to detect deformations that may occur after each use will minimise the procedural errors.

___

  • 1. Gambarini G, Rubini AG, Al Sudani D, Gergi R, Culla A, De Angelis F, Di Carlo S, Pompa G, Osta N, Testarelli L. Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J Endod. 2012;38:1408-11.
  • 2. Pedullà E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod. 2013;39:258-61.
  • 3. Gambarini G, Gergi R, Naaman A, Osta N, Al Sudani D. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion. Int Endod J. 2012;45:802-6.
  • 4. Castelló-Escrivá R, Alegre-Domingo T, Faus-Matoses V, Román-Richon S, Faus-Llácer VJ. In vitro comparison of cyclic fatigue resistance of ProTaper, WaveOne, and Twisted Files. J Endod. 2012;38:1521-4.
  • 5. Çapar ID, Arslan H. A review of instrumentation kinematics of engine-driven nickel-titanium instruments. Int Endod J. 2016;49:119-35.
  • 6. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006;32:1031-43.
  • 7. Madarati AA, Hunter MJ, Dummer PMH. Management of intracanal separated instruments. J Endod. 2013;39:569-81.
  • 8. Thompson SA, Dummer PMH. Shaping ability of ProFile .04 Taper Series 29 rotary nickel-titanium instruments in simulated root Canals. Part I. Int Endod J. 1997;30:1-7.
  • 9. Kaval ME, Capar ID, Ertas H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J Endod. 2016;42:1840-3.
  • 10. Ruddle CJ. The Protaper technique: shaping the future of endodontics. Endod Topics 2005;10:187-90.
  • 11. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments. J Endod 2004;30(4):228-30.
  • 12. Ingle J, Bakland L, Baumgartner J. Endodontics. 6.Ed., BC Decker Inc, Hamilton, 2008, s 813-48.
  • 13. Lee JY, Kwak SW, Ha JH, Kim HC. Ex-vivo comparison of torsional stress on nickel-titanium instruments activated by continuous rotation or adaptive motion. Materials (Basel) 2020:17;13:1900.
  • 14. Pazos GF, Biedma BM, Patiño PV, Piñón MR, Baz PC. Fracture and deformation of ProTaper Next instruments after clinical use J Clin Exp Dent. 2018;10:1091-5.
  • 15. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod, 2000; 26: 161-65.
  • 16. Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of failure of ProTaper nickel-titanium rotary instruments after clinical use. J Endod. 2007;33:276-9.
  • 17. Fernández-Pazos G, Martín-Biedma B, Varela-Patiño P, Ruíz-Piñón M, Castelo-Baz P. Fracture and deformation of ProTaper Next instruments after clinical use. J Clin Exper Dent, 2018; 10: e1091-95.
  • 18. Gambarini G, Piasecki L, Di Nardo D, Miccoli G, Di Giorgio G, Carneiro E, Al-Sudani D, Testarelli, L. Incidence of deformation and fracture of Twisted File Adaptive instruments after repeated clinical use. J Oral Max Res, 2016; 7: e5.
  • 19. Yared GM, Bou Dagher FE, Matchou P. Influence of rotational speed, torque and opertator´s proficiency on ProFile failures. Int Endod J. 2001;34:47-53. 21.
  • 20. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod. 2004;30:722-5. 22.
  • 21. Shen Y, Coil JM, Haapasalo M. Defects in nickel-titanium instruments after clinical use. Part 3: a 4-year retrospective study from an undergraduate clinic. J Endod. 2009;35:193-6.
  • 22. Inan U, Gonulol N. Deformation and fracture of Mtwo rotatory nickel-titanium instruments after clinical use. J Endod. 2009;35:1396- 9.