İMPLANT DESTEKLİ SABİT PROTEZLERDE OKLÜZYON PRENSİPLERİ

Kaybedilen dişlerin protetik rehabilitasyonu için dental implantların kullanımı, günümüz diş hekimliğinde oldukça sık kullanılan bir tedavi seçeneğidir. Ancak bu tedavi protokolü uygulanırken oklüzyon prensiplerine dikkat edilmediğinde komplikasyonlar ve hatta implant kayıpları görülebilir. Bunun önüne geçmek için dental implantların çevre dokular ile bağlantı şekli, fizyolojik olarak uyumu, kuvvet altında verdiği yanıtlar gibi faktörler göz önünde bulundurulmalıdır. Dental implantlar ve dişler arasındaki biyofizyolojik farklar, oklüzyon prensiplerinde de bir takım değişiklikler gerektirmektedir. Bu değişiklikleri bilmek, implantlara ve implant destekli restorasyonlara etki edebilecek olan oklüzal aşırı yükün engellenmesi için son derece önemlidir. Oklüzal aşırı yük, osseointegrasyon sonrası görülen implant kayıplarının en büyük etkenlerinden biri olarak gösterilmektedir. Bunun sebebi ise oklüzal aşırı yükün yüksek miktarda makaslama kuvvetine neden olmasıdır. İmplantlar sıkıştırma kuvvetlerine karşı son derece yüksek direnç gösterebilir. Ancak makaslama kuvvetleri implant ve çevre yapılara en fazla hasar veren kuvvet çeşididir. Oklüzyon tasarımında dikkat edilmesi gereken ise bu makaslama kuvvetlerini engelleyecek şekilde olmasıdır. Bu etkenlere örnek vermek gerekirse protez tasarımında oklüzal temas noktaları ve tüberkül eğimleri gibi faktörler kuvvetin iletimini etkilemektedir. Bu sebeple, protez tasarımına göre bir cerrahi plan yapılması tedavinin uzun dönem başarısı için büyük önem arz etmektedir. Bu derlemede, implant destekli sabit protetik restorasyonlarda oklüzal aşırı yüke neden olabilecek faktörlerden bu faktörlerin etki mekanizmasından ayrıca oklüzal aşırı yükün engellenmesi için gerekli olan oklüzyon prensiplerinden ve oluşabilecek komplikasyonlardan bahsedilmiştir.

Occlusion Principles for Implant Supported Fixed Dentures

The use of dental implants for the prosthetic rehabilitation of lost teeth is a very common treatment option in dentistry. However complications and even implant losses may occur when the principles of occlusion are not observed while applying this treatment protocol. To prevent this, factors such as the connection of dental implants with the surrounding tissues, their physiological compatibility and their responses under force should be taken into consideration. Biophysiological differences between dental implants and teeth also require some changes in the principles of occlusion. Knowing these changes helps implants and implant-supported restorations it is extremely important to prevent occlusal overload, which may affect. Occlusal overload is shown as one of the biggest factors of implant losses after osseointegration. Because, the occlusal overload causes a high shear force. Implants can exhibit extremely high resistance to compression forces. However, shear forces are the most damaging type of implant and surrounding structures. What needs to be considered in the design of occlusion is that this will prevent shear forces. To give an example of these factors, factors such as occlusal contact points and inclination of cusps in the prosthesis design affect the transmission of the force. Therefore, making a surgical plan according to the prosthetic design is of great importance for the long-term success of the treatment. In this review, the factors that can cause occlusal overload in implant-supported fixed prosthetic restorations, the mechanism of action of these factors, and the occlusion principles and complications that may occur to prevent occlusal overload are mentioned.

___

  • 1. Buser D, Ruskin J, Higginbottom F, Hardwick R, Dahlin C, Schenk RK. Osseointegration of titanium implants in bone regenerated in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 10(6):666-681.
  • 2. Schulte W. Implants and the periodontium. Int Dent J. 1995;45(1):16-26.
  • 3. Jacobs R, van Steenberghe D. Comparison between implant-supported prostheses and teeth regarding passive threshold level. Int J Oral Maxillofac Implants. 1993;8(5):549-554.
  • 4. Hämmerle CHF, Wagner D, Brägger U, et al. Threshold of tactile sensitivity perceived with dental endosseous implants and natural teeth. Clin Oral Implants Res. 1995;6(2):83-90.
  • 5. Sekine H, Komiyama Y HH, Al. E. Mobility characteristics and tactile sensitivity of osseointegrated fixturesupporting systems. In: Tissue Integration in Oral Maxillofacial Reconstruction. Amsterdam, the Netherlands: Excerpta Medica. ; 1996:326–332.
  • 6. Hillam DG. Stresses in the periodontal ligament. J Periodontal Res. 1973;8(1):51-56.
  • 7. Parfitt GJ. Measurement of the Physiological Mobility of Individual Teeth in an Axial Direction. J Dent Res. 1960;39(3):608-618.
  • 8. Lindhe J, Karring T, Lang NP. Clinical Periodontology and Implant Dentistry.; 2003.
  • 9. Michalakis KX, Calvani P, Hirayama H. Biomechanical considerations on tooth-implant supported fixed partial dentures. J Dent Biomech. 2012;3(1):1-16.
  • 10. Graves C V., Harrel SK, Rossmann JA, et al. The Role of Occlusion in the Dental Implant and Peri-implant Condition: A Review. Open Dent J. 2016;10(1):594-601.
  • 11. Wolff J. Das Gesetz Der Transformation Der Knochen. Berlin: Hirschwald; 1892.
  • 12. Frost HM. A 2003 update of bone physiology and Wolff s law for clinicians. Angle Orthod. 2004;74(1):3-15.
  • 13. Frost HM. Perspectives: bone’s mechanical usage windows. Bone Miner. 1992;19(3):257-271.
  • 14. Isidor F. Influence of Forces on Bone Osseo. Clin Oral Implants Res. 2006;17(Suppl.2):8-18.
  • 15. Bidez MW, Misch CE. Issues in bone mechanics related to oral implants. Implant Dent. 1992;1(4):289-294.
  • 16. Baumeister T AE. Marks Standard Handbook of Mechanical Engineers.; 1978.
  • 17. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent. 2005;14(2):108-116.
  • 18. JE L, RW. P. Biomaterials for dental implants. In: Misch CE, Ed. Contemporary Implant Dentistry. St Louis, MO: Mosby. ; 1993:262.
  • 19. Adams DF. The American Academy of Periodontology. J Periodontol. 1996;67(2):177-179.
  • 20. Jin LJ, Cao CF. Clinical diagnosis of trauma from occlusion and its relation with severity of periodontitis. J Clin Periodontol. 1992;19(2):92-97.
  • 21. Gray C. Glossary of Oral and Maxillofacial Implants. Prim Dent Care. 2010;17(1):20-20.
  • 22. Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res. 2001;12(2):144-152.
  • 23. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Brånemark implants affects interfacial bone modeling and remodeling. In: International Journal of Oral and Maxillofacial Implants. Vol 9. ; 1994:345-360.
  • 24. Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 10(3):326-334.
  • 25. Garaicoa-Pazmiño C, Suárez-López del Amo F, Monje A, et al. Influence of Crown/Implant Ratio on Marginal Bone Loss: A Systematic Review. J Periodontol. 2014;85(9):1214-1221.
  • 26. Malchiodi L, Cucchi A, Ghensi P, Consonni D, Nocini PF. Influence of crown-implant ratio on implant success rates and crestal bone levels: A 36-month follow-up prospective study. Clin Oral Implants Res. 2014;25(2):240-251.
  • 27. Blanes RJ. To what extent does the crown-implant ratio affect the survival and complications of implant-supported reconstructions? A systematic review. Clin Oral Implants Res. 2009;20(SUPPL. 4):67-72.
  • 28. Schulte J, Flores AM, Weed M. Crown-to-implant ratios of single tooth implant-supported restorations. J Prosthet Dent. 2007;98(1):1-5.
  • 29. Schneider D, Witt L, Hämmerle CHF. Influence of the crown-to-implant length ratio on the clinical performance of implants supporting single crown restorations: A cross-sectional retrospective 5-year investigation. Clin Oral Implants Res. 2012;23(2):169-174.
  • 30. Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants. 12(3):360-370.
  • 31. Lindquist LW, Rockler B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent. 1988;59(1):59-63.
  • 32. Morneburg TR, Pröschel PA. In vivo forces on implants influenced by occlusal scheme and food consistency. Int J Prosthodont. 16(5):481-486.
  • 33. Weinberg LA. Therapeutic biomechanics concepts and clinical procedures to reduce implant loading. Part I. J Oral Implantol. 2001;27(6):293-301.
  • 34. Rungsiyakull C, Rungsiyakull P, Li Q, Li W, Swain M. Effects of occlusal inclination and loading on mandibular bone remodeling: A finite element study. Int J Oral Maxillofac Implant. 2011;26(3):527-537.
  • 35. Bedi S, Thomas R, Shah R, Mehta D. The effect of cuspal inclination on stress distribution and implant displacement in different bone qualities for a single tooth implant: A finite element study. Int J Oral Heal Sci. 2015;5(2):80.
  • 36. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-150.
  • 37. Carlsson GE. Dental occlusion: Modern concepts and their application in implant prosthodontics. Odontology. 2009;97(1):8-17.
  • 38. Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress – A contact finite element analysis of indirect axial loading. Mater Sci Eng C. 2019;99(June 2018):367-373.
  • 39. Romeo E, Storelli S. Systematic review of the survival rate and the biological, technical, and aesthetic complications of fixed dental prostheses with cantilevers on implants reported in longitudinal studies with a mean of 5 years follow-up. Clin Oral Implants Res. 2012;23(SUPPL.6):39-49.
  • 40. Aglietta M, Siciliano VI, Zwahlen M, et al. A systematic review of the survival and complication rates of implant supported fixed dental prostheses with cantilever extensions after an observation period of at least 5 years. Clin Oral Implants Res. 2009;20(5):441-451.
  • 41. Becker CM. Cantilever fixed prostheses utilizing dental implants: a 10-year retrospective analysis. Quintessence Int. 2004;35(6):437-441.
  • 42. Hälg GA, Schmid J, Hämmerle CHF. Bone level changes at implants supporting crowns or fixed partial dentures with or without cantilevers. Clin Oral Implants Res. 2008;19(10):983-990.
  • 43. da Silva E, dos Santos D, Sonego M, Gomes J, Pellizzer E, Goiato M. Does the Presence of a Cantilever Influence the Survival and Success of Partial Implant-Supported Dental Prostheses? Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implants. 2018;33(4):815-823.
  • 44. Storelli S, Del Fabbro M, Scanferla M, Palandrani G, Romeo E. Implant-supported cantilevered fixed dental rehabilitations in fully edentulous patients: Systematic review of the literature. Part II. Clin Oral Implants Res. 2018;29:275-294.
  • 45. Romanos GE, Gupta B, Eckert SE. Distal cantilevers and implant dentistry. Int J Oral Maxillofac Implants. 27(5):1131-1136.
  • 46. Duyck J, Rønold HJ, Van Oosterwyck H, Naert I, Sloten J Vander, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: An animal experimental study. Clin Oral Implants Res. 2001;12(3):207-218.
  • 47. Kim P, Ivanovski S, Latcham N, Mattheos N. The impact of cantilevers on biological and technical success outcomes of implant-supported fixed partial dentures. A retrospective cohort study. Clin Oral Implants Res. 2014;25(2):175-184.
  • 48. Vigolo P, Mutinelli S, Zaccaria M, Stellini E. Clinical Evaluation of Marginal Bone Level Change Around Multiple Adjacent Implants Restored with Splinted and Nonsplinted Restorations: A 10-Year Randomized Controlled Trial. Int J Oral Maxillofac Implants. 2015;30(2):411-418.
  • 49. Naert I, Koutsikakis G, Duyck J, Quirynen M, Jacobs R, Van Steenberghe D. Biologic outcome of implant-supported restorations in the treatment of partial edentulism Part 1: A longitudinal clinical evaluation. Clin Oral Implants Res. 2002;13(4):381-389.
  • 50. Fu JH, Hsu YT, Wang HL. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol. 2012;5:91-103.
  • 51. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26-35.
  • 52. Lundgren D, Laurell L. Biomechanical aspects of fixed bridgework supported by natural teeth and endosseous implants. Periodontol 2000. 1994;4(1):23-40.
  • 53. Rilo B, da Silva JL, Mora MJ, Santana U. Guidelines for occlusion strategy in implant-borne prostheses. A review. Int Dent J. 2008;58(3):139-145.
  • 54. Gross MD. Occlusion in implant dentistry. A review of the literature of prosthetic determinants and current concepts. Aust Dent J. 2008;53(SUPPL. 1).
  • 55. Weinberg LA. Reduction of Implant Loading with Therapeutic Biomechanics. Implant Dent. 1998;7(4):277-285.
  • 56. Lavigne GJ, Khoury S, Abe S, Yamaguchi T, Raphael K. Bruxism physiology and pathology: An overview for clinicians. In: Journal of Oral Rehabilitation. Vol 35. ; 2008:476-494.
  • 57. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach. J Oral Rehabil. 2016;43(11):813-823.
  • 58. Glaros AG. Incidence of diurnal and nocturnal bruxism. J Prosthet Dent. 1981;45(5):545-549.
  • 59. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Bruxism and dental implant treatment complications: a retrospective comparative study of 98 bruxer patients and a matched group. Clin Oral Implants Res. 2017;28(7):e1-e9.
  • 60. Chitumalla R, Halini Kumari K V., Mohapatra A, Parihar AS, Anand KS, Katragadda P. Assessment of survival rate of dental implants in patients with bruxism: A 5-year retrospective study. Contemp Clin Dent. 2018;9(6):S278-S282.
  • 61. Lekholm U ZG. Patient selection and preparation. In: Brånemark P-I, Zarb GA, Albrekstsson T, Eds. Tissue-Integrated Prosthesis: Osseointegration in Clinical Dentistry. Chicago, IL. ; 1985:199–209.
  • 62. Vairo G, Sannino G. Comparative evaluation of osseointegrated dental implants based on platform-switching concept: Influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance. Comput Math Methods Med. 2013;2013.
  • 63. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J Prosthet Dent. 2008;100(6):422-431.
  • 64. Santiago Junior JF, Pellizzer EP, Verri FR, De Carvalho PSP. Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3-D finite element study. Mater Sci Eng C. 2013;33(8):4700-4714.
  • 65. Jaffin RA, Berman CL. The Excessive Loss of Branemark Fixtures in Type IV Bone: A 5-Year Analysis. J Periodontol. 1991;62(1):2-4.
  • 66. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JYK. Clinical complications with implants and implant prostheses. J Prosthet Dent. 2003;90(2):121-132.
  • 67. Appleton RS, Nummikoski P V., Pigno MA, Cronin RJ, Chung KH. A radiographic assessment of progressive loading on bone around single osseointegrated implants in the posterior maxilla. Clin Oral Implants Res. 2005;16(2):161-167.
  • 68. Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12(4):306-317.
  • 69. Huang H-L, Chang C-H, Hsu J-T, Fallgatter AM, Ko C-C. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 22(4):551-562.
  • 70. Guan H, van Staden R, Loo Y-C, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants. 24(5):866-876.
  • 71. Guan H, Van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Evaluation of multiple implant-bone parameters on stress characteristics in the mandible under traumatic loading conditions. Int J Oral Maxillofac Implant. 2010;25(3):461-472.
  • 72. Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. Int J Periodontics Restorative Dent. 2010;30(1):89-95.
  • 73. Shin Y-K, Han C-H, Heo S-J, Kim S, Chun H-J. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. Int J Oral Maxillofac Implants. 21(5):789-794.
  • 74. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998;106(1):527-551.
  • 75. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants: (II). Etiopathogenesis. Eur J Oral Sci. 1998;106(3):721-764.
  • 76. Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss. Clin Oral Implants Res. 2012;23(SUPPL.6):95-107.
  • 77. Lobbezoo F, Brouwers JEIG, Cune MS, Naeije M. Dental implants in patients with bruxing habits. J Oral Rehabil. 2006;33(2):152-159.
  • 78. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: The Toronto study. Part III: Problems and complications encountered. J Prosthet Dent. 1990;64(2):185-194.
  • 79. Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report. Int J Oral Maxillofac Implants. 1993;8(6):635-640.
  • 80. Wennerberg A, Jemt T. Complications in partially edentulous implant patients: a 5-year retrospective follow-up study of 133 patients supplied with unilateral maxillary prostheses. Clin Implant Dent Relat Res. 1999;1(1):49-56.
  • 81. Schwarz MS. Mechanical complications of dental implants. In: Clinical Oral Implants Research. Vol 11 Suppl 1. ; 2000:156-158.
European Annals of Dental Sciences-Cover
  • Yayın Aralığı: Yıllık
  • Başlangıç: 1972
  • Yayıncı: Ankara Üniversitesi
Sayıdaki Diğer Makaleler

AVULSİYON SONRASI DİŞ KAYBI OLDUĞU OLGULARDA GÜNCEL TEDAVİ YAKLAŞIMLARI

Betül Büşra URSAVAŞ, Tuğba BEZGİN

ZİRKONYA DESTEKLİ TAM SERAMİK RESTORASYONLAR İLE REHABİLİTASYON: OLGU RAPORU

Zekiye Begüm GÜÇLÜ, Pelin ATALAY, Recep Fatih GÜÇLÜ, Gizem KILIÇ

KIBRIS TÜRK POPÜLASYONUNDA UZAMIŞ STYLOID PROÇES PREVALANSI: RETROSPEKTIF DEĞERLENDIRME

Aida KURBANOVA, Seçil AKSOY, Nimet İlke AKÇAY, Kaan ORHAN

KONDİLLERDEKİ DEJENERATİF DEĞİŞİKLİKLERİN İNCELENMESİNDE PANORAMİK RADYOGRAFİ ETKİNLİĞİNİN KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ İLE DEĞERLENDİRİLMESİ

Umut SEKİ, Enver Alper SİNANOĞLU

POSTEROANTERİOR RADYOGRAFİ ÖLÇÜMLERİNDE KULLANILAN NOKTALARIN TEKRARLANABİLİRLİĞİ

Bartu ALTUĞ, Elif DEMİREL, Prof. Dr. Erhan ÖZDİLER

COVID-19- ÇOCUK DİŞ HEKİMLİĞİ AÇISINDAN ÖNEMİ

Merve ALKIŞ, Sibel EZBERCİ

MAKSİLLER RETRÜZYONUN BÜYÜME DÖNEMİNDE ALT-RAMEC VE MANDİBULAR MİNİ VİDA İŞBİRLİĞİ İLE TEDAVİSİ: Bir Olgu Sunumu

Jerina DULE, Ramin EYYUBOV, Hatice GÖKALP

KONKA BÜLLOZA GÖRÜLME SIKLIĞININ KONİK IŞINLI BİLGİSAYARLI TOMOGRAFİ İLE ANALİZİ VE MAKSİLLER SİNÜZİT İLE İLİŞKİSİ

Sevde GÖKSEL, Hülya ÇAKIR KARABAŞ, Beliz GÜRAY, Sedef Ayşe TAŞYAPAN, İlknur ÖZCAN

ÇOCUK HASTALARDA ERKEN DİŞ KAYBININ YAŞA VE DİŞ GRUBUNA GÖRE İNCELENMESİ

Esin GÜNAL, Poyzan BOZKURT

FARKLI KONSANTRASYONLARDAKİ SODYUM HİPOKLORİT SOLÜSYONLARININ ENDODONTİK TEDAVİLİ DİŞLERİN KIRILMA DİRENCİNE ETKİSİ

Meltem KÜÇÜK, Fatma KERMEOĞLU, Atakan KALENDER, Umut AKSOY