PZR metoduyla atlarda birey ve ebeveyn tayini

Amaç: Atlarda ebeveyn tayininde kullanılabilecek bir mikrosatellit panelini geliştirmek ve test etmektir. Gereç ve Yöntem: Araştırmada 4 farklı at ırkından 189 adet kan örneği toplandı. Beş adet mikrosatellit markörü kullanılarak, izolasyonu yapılan genomik DNA örnekleri Polimeraz Zincir Reaksiyonu (PZR) metoduyla çoğaltıldı ve PZR ürünleri poliakrilamit jellerde ayrıştırıldı. Standart bir DNA ladder yardımıyla alleller tanımlandı. Bulgular: Lokus başına 9-13 arasında değişen, toplam 53 farklı allel tanımlandı. Gözlenen (Ho) ve beklenen heterozigotluk (He) değerleri sırasıyla 0.496-0.880 ve 0.800-0.851 arasında bulundu. Polymorphism Information Content değerleri ise 0.774-0.832 arasında gözlemlendi. Dışlama gücü (DG) değerleri 0.619-0.702 arasında gözlemlenirken, toplam DG 0.99060 olarak bulundu. Öneri: Kullanılan test panelinin Türkiye’de ebeveyn tayininde kullanılabileceği ve hatalı sonuçları azaltmak için kullanılan mikrosatellit sayısının arttırılmasının faydalı olacağı kanaatine varıldı.

Individual and parentage testing in horses by PCR methodology.

Aim: The objective of this study was to develop and test a microsatellite panel for parentage analysis in horses. Materials and Methods: A total of 189 blood samples were collected from four different horse breeds in Turkey. We selected five horse microsatellite loci and used to amplify genomic DNA by polymerase chain reaction (PCR). The resulting PCR products were separated on polyacrylamide gels. Allele identification was conducted based on their base-pair size by comparing a size standard. Results: A total of 53 alleles was determined ranging from 9 to 13 at each locus. The observed heterozygosity (Ho) and expected heterozygosity (He) were ranged from 0.496 to 0.880 and from 0.800 to 0.851, respectively. Polymorphism information content (PIC) values were observed between 0.774 and 0.832. Power of exclusion (PE) at each microsatellite locus ranged from 0.619 to 0.702, resulting in a total PE value of 0.99060. Conclusion: These results indicate that this set of microsatellite is useful for horse parentage testing in Turkey. Due to possible high level of inbreeding in some breeds, the use of increased number microsatellite loci will thereby be appropriate for avoiding a false parenting and misidentification.

___

  • Belkhir K, Borsa P, Chikhi L, Goudet J, Bonhomme F, 1996- 2000. Genetix 4.00 WindowsTM software population genetics, Laboratoire Genome, Populations, Interactions, University of Montpellier, France.
  • Bowling AT, Clark RS, 1985, Blood-group and protein polymorphism gene-frequencies for 7 breeds of horses in the United-States, Anim Blood Groups BI, 16, 2, 93-108.
  • Bownling AT, Eggleston-Stott ML, Byrns G, Clark RS, Dileanis S, Wictum E, 1997. Validation of microsatellite markers for routine horse parentage testing. Anim Genet, 28, 247-252.
  • Bulut Z, Nizamlıoğlu M, Togan İ, 2004. Hasmer, Hasak ve Alman Siyah Baş koyun ırklarının genetik yapılarının mikrosatellit markerlarla incelenmesi. Eurasian J Vet Sci, 20, 85-91.
  • DeAssis JB, DeLaat DM, Peixoto MGCD, Bergmann JAG, Fonseca CG, Carvalho MRS, 2009. Genetic diversity and population structure in Brazilian Mangalarga Marchador horses. Genet Mol Res, 8, 1519-1524.
  • Galov A, Byrne K, Duras-Gomercic M, Gomercic T, Nushol Z, Dragutin Vincek, Kocijan I,Tadic Z, Benkovic V, Basic I, Funk SM, 2005. Effectiveness of nine polymorphic microsatellite markers in parentage testing in Posavina, Croatian Coldblood and Lipizzaner horse breeds in Croatia. Livestock Prod Sci, 93, 277-282.
  • Georgescu SE, Manea MA, Costache M, 2008. The genetic structure of indigenous Romanian Hucul horse breed inferred from microsatellite data. Roumanian Biotech Let, 13, 4030-4036.
  • Giacomoni EH, Fernandez-Stolz GP, Freitas TRO, 2008. Genetic diversity in the Pantaneirohorse breed assessed using microsatellite DNA markers. Genet Mol Res, 7, 261-270.
  • Goldstein DB, Schlotterer C, 1998. Microsatellites: Evolution and Application, Oxford University Press, Oxford and Vienna, pp: 80-97.
  • Hoffmann I, Marsan PA, Barker JSF, Cothran EG, Hanotte O, Lenstra JA, Milan D, Weigend S, Simianer H, 2004. New MoDAD marker sets to be used in diversity studies for the major farm animal species: Recommendations of a joint ISAG/FAO working group. 29th ISAG (International Society of Animal Genetics) Congress, 11–16 September, Tokyo, 2004.
  • Jakabova D, Trandzik J, Chrastina J, Hudecova L, Zetochova E, Bulla J, Bugarsky A, Jakab F, Kozlik P, 2002. Effectiveness of six highly polymorphic microsatellite markers in resolving paternity cases in thoroughbred horses in Slovakia. Czech J Anim Sci, 47, 497-501.
  • Juras R, Cothran EG, 2004. Microsatellites in Lithuanian native horse breeds: usefulness for parentage testing. Biologija, 4, 6-9.
  • Kelly L, Postiglioni A, De Andres DF, Vega-Pla JL, Gagliardi R, Biagetti R, Franco J, 2002. Genetic characterisation of the Uruguayan Creole horse and analysis of relationships among horse breeds. Res Vet Sci, 72, 69-73.
  • Kiguwa SL, Hextall P, Smith AL, Critcher R, Swinburne J, Million L, Binns MM, Goodfellow PN, McCarthy LC, Farr CJ, Oakenfull EA, 2000. A horse whole-genome-radiation hybrid panel: Chromosome 1 and 10 preliminary maps. Mamm Genome, 11,803-805.
  • Kurar E, 2001. Comparative physical and linkage mapping of bovine chromosome 24 with human chromosome 18, Thesis, University of Wisconsin-Madison, USA.
  • Lindgren G, Sandberg K, Persson H, Marklund S, Breen M, Sandgren B, Carlsten J, Ellegren H, 1998. A primary male autosomal linkage map of the horse genome, Genome Res, 8, 951-966.
  • Luis C, Cothran EG, Oom MM, 2002. Microsatellites in Portuguese autochthonous horse breeds: usefulness for parentage testing. Genet Molec Biol, 25, 131-134.
  • Marklund S, Ellegren H, Eriksson S, Sandberg K, Andersson L, 1994. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim Genet, 25, 19-23.
  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM, 1998. Statistical confidence for likelihood- based paternity inference in natural populations. Mol Ecol, 7, 639-655.
  • Nei M, 1987. Molecular Evolutionary Genetics, Columbia University Pres, Newyork, USA, pp: 90-128
  • Özşensoy Y, Kurar E, Bulut Z, Nizamlıoğlu M, 2008. Mikrosatellit DNA markörleri kullanılarak atlarda ebeveyn tayini: Bir vaka takdimi. Eurasian J Vet Sci, 24, 87-91.
  • Özşensoy Y, Kurar E, Doğan M, Bulut Z, Altunok V, Işık A, Çamlıdağ A, Nizamlıoğlu M, 2010. Türkiye’de bulunan bazı yerli sığır ırklarının STR markörler ile genetik karakterizasyonu. BIBAD, 3, 163-171.
  • Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Clonning: A Laboratory Manual. Second Edition, Cold-Spring Harbor, New York, USA, Volume 2, pp: 9.16-9.19.
  • Tozaki T, Kakoi H, Mashima S, Hirota K, Hasegawa T, Ishida N, Miura N, Choi-Miura NH, Tomita M, 2001. Population study and validation of paternity testing for thoroughbred horses by 15 microsatellite loci. J Vet Med Sci, 63, 1191-1197.
  • Tozaki T, Takezaki N, Hasegawa T, Ishida N, Kurosawa M, Tomita M, Saitou N, Mukoyama H, 2003. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup. J Hered, 94, 374-380.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi