Moringa oleifera bitki yaprağının mineral ve yağ asidi bileşenlerinin belirlenmesi

Son yıllarda bitkilerin besinsel bileşenleri, sağlık üzerindeki etkileri nedeniyle pek çok çalışmalara konu olmuştur. Bu çalışmada Moringa oleifera yaprak tozunda mineral ve yağ asidi içeriği belirlenmiştir. Element analizi için numuneler, bir mikrodalga fırında HNO3 ve HCl ile sindirildi. Numunelerde mineral konsantrasyonları İndüktif Eşleşmiş Plazma Kütle Spektrometresi (ICP-MS) ile belirlendi. Numunelerde magnezyum 6393 μg g-1, demir 927 μg g-1, çinko 138 μg g-1 ve bakır ise 6 μg g-1 olarak tespit edilmiştir. Yağ asiti ekstraksiyonu sonrası, yağ asidi ve ester profilleri için Gaz Kromatografisi Alev İyonlaşmalı Dedektörü (GC-FID) kullanılarak tanımlanmıştır. Moringa oleifera yaprağında yağ asitlerinin ana bileşenleri olarak lauric asit (C12:0), tridekanoik asit (C13:0), miristik asit (C14:0), palmitik asit (C16:0), stearik asit (C18:0), oleik asit (C18:1), linoleik asit (C18:2), gama-linolenik asit (C18:3) tayin edilmiştir.

Moringa oleifera bitki yaprağının mineral ve yağ asidi bileşenlerinin belirlenmesi

In recent years, the nutritional components of plants have been the subject of many studies due to their effects on health. In this study, mineral and fatty acid content of Moringa oleifera leaf powder was determined. Samples were digested with HNO3 and HCl in a microwave oven for element analysis. In samples, mineral concentrations were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The mineral content was determined as magnesium 6393 μg g-1, iron 927 μg g-1, zinc 138 μg g-1, and cupper 6 μg g-1 by Inductively Coupled Plasma Mass Spectrometry in samples. After fatty acid extraction, fatty acid and ester profiles were verified using Gas Chromatography Flame Ionization Detection (GC-FID). The main components of fatty acids in Moringa oleifera leaf were determined as lauric acid (C12:0), tridecanoic acid (C13:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid. (C18:1), linoleic acid (C18:2), gamma-linolenic acid (C18:3).

___

  • Abdulkarim SM, Long K, Lai OM. 2005. Some physicochemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem 93: 253–263.
  • Akhter P, ur-Rehman K, Orfi SD, Ahmad N. 2004. Assessment of iodine levels in Pakistani diet. Nutrition 20: 783–787.
  • Amaglo NK, Bennett RN, Lo Curto RB. 2010. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L. grown in Ghana. Food Chem 122:1047–1054.
  • Ananias NK, Kandawa-Schulz M, Hedimbi M, Kwaambwa HM, Tutu H, Makita C, Chimuka L. 2016. Comparison of metal content in seeds of Moringa ovalifolia and Moringa oleifera. Africal J Food Sci 10(9): 172–177.
  • Barcelo´-Coblijn,G, Murphy EJ. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374.
  • Bhosale TJ, Chavan,MK, Sabale,TD, Dr Lavar,VS. 2021. Proximate analysis of Azadirachta indica & Moringa oleifera L. leaves as feed additives for ruminants. Pharm J Innova SP-10(12): 1884-1886.
  • Bodur M, Uçar A. 2021. Palmitoleik asidin aazı kronik hastalıklardaki rolü: Kısa derleme. Düzce Üniversitesi Sağ Bil Enst Der 11(1): 103-107.
  • Çelebi Ş, Kaya A. 2008. Konjuge linoleik asitin biyolojik özellikleri ve hayvansal ürünlerde miktarını artırmaya yönelik bazı çalışmalar. Hayvansal Üretim 49(1): 62-68.
  • Çelik S, Demirel M. 2004. İnsan ve hayvan sağlığı bakımından ω yağ asitleri ve konjuge linoleik asidin önemi. YYÜ Fen Bil Enst Der 1: 25–35.
  • Gyamfi ET, Yeboah,PO, Steiner-Asiedu,M, Fletcher JJ. 2011. Assessment of essential elements in Moringa oleifera. Elix Food Sci 36: 3222–3225.
  • Islam S, Jahan MAA, Khatun R. 2005. In vitro regeneration and multiplication of year-round fruit bearing Moringa oleifera L. J Biol Sci 5(2): 145-148.
  • Karaca E, Aytaç S. 2007. Yağ itkilerinde ağ asitleri kompozisyonu üzerine etki eden faktörler. OMÜ Ziraat Fak Der 22(1): 123-131.
  • Kilic S. 2018. Aromatik bitki ve yağlarının mineral element miktarlarının karşılaştırılması. Gıda 43(4): 617-623.
  • Lalas S, Tsaknis J. 2002. Characterization of Moringa oleifera seed oil variety ‘‘Periyakulam 1’’. J Food Comp Anal 15: 65–77
  • Magat SS, Raquepo CM, Pabustan CD. 2009. Mineral macro-nutrients, micro-nutrients and other elements in leaves of malunggay plant (moringa oleifera) sampled in some locations in the Philippines. Crop Agronomy. Nutrition and Farming Systems Program, Technology Advisory Notes.
  • Martín-Domingo MC, Plaa A, Hernández AF, Olmedoa P, Navas-Acienc A, Lozano-Paniaguaa D, Gila F. 2017. Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. J Food Comp and Anal 60: 81-89.
  • Mbailao M, Mianpereum T, Albert N. 2014. Proximal and elemental composition of Moringa oleifera (Lam) leaves from three regions of chad. J Food Res Sci 3(10): 12–20.
  • Nambiar V, Seshadri S. 2001. Bioavailability trials of beta-carotene from fresh and dehydrated drumstick leaves (Moringa oleifera) in a rat model. Plant Foods Hum Nutr 56 (1): 83-95.
  • Ngigi AN, Muraguri BM. 2019. ICP-OES determination of essential and non-essential elements in Moringa oleifera, Salvia hispanica and Linum usitatissimum. Scie African 6: e00165.
  • Ross IA. 1999. Medicinal plants of the world; chemical constituents, traditional and modern medicinal uses. Humana Press. Totowa, New Jersey, 231-239p.
  • Saini RK, Shetty NP, Giridhar P. 2014. GC-FID/MS Analysis of fatty acids in Indian Cultivars of Moringa oleifera: Potential sources of PUFA. JAOCS 91: 1029–1034.
  • Taverniers I, De Loose M, Van Bockstaele E. 2004. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal Chem 23(8): 535-552.