Cu katkılı biyocam ve Cu nanoparçacıklı Sr katkılı biyocamdan 3D kompozit yapı iskelesi üretimi

Bu çalışmada, çözücü döküm ve tanecik uzaklaştırma yöntemi kullanılarak, çok işlevli yapı iskelelerinin geliştirilmesi için ilgili iyonlarla BG / polimer 3D kompozit yapı iskelelerinin üretilmesi amaçlanmıştır. Gözenekli yapıya sahip yapı iskeleleri başarıyla sentezlenmiş ve yapı iskelelerinin mikroyapısında iyi bir gözenek bağlantısının bulunduğu gözlemlenmiştir. Kompozit yapı iskelelerinin in vitro biyoaktivitesi; Taramalı Elektron Mikroskopisi (SEM), X-ışını kırınımı ve Fourier-Dönüşümlü Kızılötesi Spektroskopi ölçümleri ile teyit edilmiştir. Bunun dışında, terapatik iyonların salımının; SBF'de kalma sürelerinin bir fonksiyonu olarak, Sr iyon salımı 1.27-4.81 ppm aralığında iken, Cu iyon salımları sırasıyla, Cu katkılı BG için 0.67-1.42 ppm, Sr katkılı BG-%1 Cu için 1.53-4.54 ppm,  Sr katkılı BG-%2 Cu için 3.08-7.59 ppm olarak saptanmıştır. Bu sonuç yapı iskelelerinin, kemik dokusu rejenerasyonunun belirleyicisi olan SBF ortamına, stronsiyum ve bakır dozlarını kontrollü olarak verebileceğini göstermiştir.

3D composite scaffold production using Cu doped bioglass and Sr doped bioglass with Cu nanoparticles

In this study, it was aimed to produce BG/polymer 3D composite scaffolds with relevant ions in order to develop multifunctional scaffolds by using salt template-particulate leaching technique. The porous scaffolds were successfully synthesized and it was observed that there was a good pore interconnectivity maintained in the scaffold microstructure. In vitro bioactivity of the composite scaffolds was confirmed by Scanning Electron Microscopy, X-ray diffraction and Fourier-Transform Infrared Spectroscopy measurements. Furthermore, the release of therapeutic ions were determined as a function of immersion time in SBF, while the Sr ion release is in the range of 1.27-4.81 ppm, the Cu ion releases are 0.67-1.42 ppm for Cu doped BG, 1.53-4.54 ppm for Sr doped BG- 1% Cu, and 3.08-7.59 ppm for Sr doped BG- 2% Cu, respectively. This result indicated that the scaffolds can deliver controlled doses of strontium and copper toward the SBF medium that is the determinant for bone tissue regeneration.

___

  • Akram M, Alshemary AZ, Goh YF, Ibrahim WAW, Lintang HO, Hussain R 2015. Continuous microwave flow synthesis of mesoporous hydroxyapatite. Material Science of Engineering C, 56: 356–362.
  • Catauro M, Bollino F, Renella RA, Papale F 2015. Sol–gel synthesis of SiO2–CaO–P2O5 glasses: Influence of the heat treatment on their bioactivity and biocompatibility. Ceramics International, 41: 12578–12588. Chen Q, Roether JA, Boccaccini AR 2008a. Tissue engineering scaffolds from bioactive glass and composite materials. Topics in Tissue Engineering, Vol. 4 (Ch. 6), Biomaterials and Tissue Engineering Group.
  • Chen YW, Shi GQ, Ding YL, Yu XX, Zhang XH, Zhao CS, et al. 2008b. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs. Journal of Material Science: Materials in Medicine, 19: 2655–2662.
  • Correlo VM, Oliveira JM, Mano JF, Neves NM, Reis RL 2011. Natural origin materials for bone tissue engineering–properties, processing, and performance. Principles of Regenerative Medicine, 2nd ed., (Ch. 32, Part 3), London: Academic Press.
  • Erol MM, Mouriňo V, Newby P, Chatzistavrou X, Roether JA, Hupa L, Boccaccini AR 2012a. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomaterialia, 8: 792–801.
  • Erol M, Özyuğuran A, Özarpat Ö, Küçükbayrak S 2012b. 3D Composite scaffolds using Strontium containing bioactive glasses. Journal of European Ceramic Society, 32: 2747–2755.
  • Gerhardt LC, Boccaccini AR 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3: 3867-3910.Hench LL, Splinter RJ, Allen WC 1971. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research Part A, 5(6): 117–141.
  • Kaur G, Pandey P, Singh K, Homa D, Scott B, Pickrell G 2014. A review of bioactive glasses: Their structure, properties, fabrication, and apatite formation. Journal of Biomedical Materials Research Part A, 102A: 254–274.
  • Kokubo T, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T 1990. Ca, P-rich layer formed on high-strength bioactive glass-ceramic. Journal of Biomedical. Material and Research, 24(3): 331–343.
  • Leal AI, Caridade SG, Ma J, Yu N, Gomes ME, Reis RL, Jansen JA, Walboomers XF, Mano JF 2013. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dental Materials, 29: 427–436.
  • Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR 2010. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 31: 2806-2815.
  • Öztopalan DF, Durmuş AS 2017. Kemik grefti yerine biyoaktif cam kullanımı. Dicle Üniversitesi Veterinerlik Fakültesi Dergisi, 10(1): 56-61.
  • Pereiraa RV, Salmoriab GV, Mouraa MOC, Aragonesc Á, Fredela MC 2014. Scaffolds of PDLLA/Bioglass 58S Produced via Selective Laser Sintering. Materials Research, 17(1): 33-38.
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR 2006. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18): 3413–3431.
  • Ryszkowska JL, Auguścik M, Sheikh A, Boccaccini AR 2010. Biodegradable polyurethane composite scaffolds containing Bioglass for bone tissue engineering. Composites Science and Technology, 70: 1894–1908.
  • Seeman E, Devogelaer JP, Lorenc R, Spector T, Brixen K, Balogh A, et al. 2008. Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. Journal of Bone and Mineral Research, 23: 433-438.
  • Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S 2014. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Material Science of Engineering C, 43: 153–163.
  • Wan Y, Wu C, Xiong G, Zuo G, Jin J, Ren K, Zhu Y, Wang Z, Luo H 2015. Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. Journal of Mechanical Behavior of Biomedical Materials, 47: 29–37.
  • Wang H, Zhao S, Zhou J, Shen Y, Huang W, Zhang C, et al. 2014. Evaluation of borate BG scaffolds as a controlled delivery system for Cu ions in stimulating osteogenesis and angiogenesis in bone healing. Journal of Materials Chemistry B, 2: 8547-8557.
  • Wang W, Yeung KW 2017. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2: 224-247.