SAKARYA'DA 2018 VE 2019 YILLARINDA AIRQ+ YAZILIMI KULLANILARAK NO2 HAVA KİRLETİCİSİNE ATFEDİLEN MORTALİTENİN TAHMİNİ

Hava kirliliği günümüzde insan sağlığını tehdit eden en büyük çevre sorunlarından biridir. Bu çalışmanın amacı, Sakarya'da azot dioksit (NO2) hava kirleticisinin mortaliteye olan etkisini araştırmaktır. Hava kirletici verileri Çevre, Şehircilik ve İklim Değişikliği Bakanlığı'ndan, nüfus ve ölüm verileri Türkiye İstatistik Kurumu (TÜİK) veri tabanından elde edilmiştir. 30 yaş ve üzeri nüfus için 2018 ve 2019 yıllarında AirQ+ yazılımı ile tahmini atfedilebilir oran (EAP), tahmini atfedilebilir vaka sayısı (ENAC) ve risk grubundaki 100.000 nüfus başına tahmini atfedilebilir vaka sayısı (ENAC/100,000) 20 ve 10 μg/m3 eşik değerleri (COV) için hesaplanmıştır. Sakarya'da 2018 ve 2019 yıllarında ortalama NO2 konsantrasyonları sırasıyla 28,12 ve 31,50 μg/m3 olarak belirlendi. 2018 ve 2019 yıllık NO2 konsantrasyonundaki artış nedeniyle, EAP 20 ve 10 μg/m3 COV için sırasıyla %3,21'den %4,52'ye ve %7,02'den %8,28'e yükseldi. Dünya Sağlık Örgütü'nün (WHO) NO2 için hava kalitesi kılavuz seviyesini düşürmesinin beklendiği gibi bu kirleticiye atfedilebilecek mortalitede artışa neden olduğu gözlemlenmiştir.

PREDICTION OF MORTALITY ATTRIBUTED TO NO2 AIR POLLUTANT IN SAKARYA BY USING AIRQ+ SOFTWARE FOR 2018 AND 2019

Air pollution is one of the biggest environmental problems that threaten human health today. The aim of this study is to investigate the effect of nitrogen dioxide (NO2) air pollutant on mortality in Sakarya. Air pollutant data were obtained from the Ministry of Environment, Urbanisation and Climate Change (MEUCC), and population and death data were obtained from the Turkish Statistical Institute (TUIK) database. For the population aged 30 and over, estimated attributable proportion (EAP), estimated number of attributable cases (ENAC), and estimated number of attributable cases per 100,000 (ENAC/100,000) population at risk group were calculated with AirQ+ software in 2018 and 2019 for cut-off values (COV) of 20, and 10 μg/m3. In Sakarya for 2018 and 2019, the mean concentrations of NO2 were determined as 28.12 and 31.50 μg/m3, respectively. Due to the increase in 2018 and 2019 annual NO2 concentration, was increased from 3.21% to 4.52% and from 7.02% to 8.28% for COV of 20 and 10 μg/m3, respectively. It has been observed that the World Health Organization (WHO) decreasing the air quality guideline level for NO2 resulted in an increase in death rates attributable to this pollutant, as expected.

___

  • 1. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021 [cited 2022 January 2]. Available from: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y.
  • 2. IQAir. World air quality report: region and city PM2.5. 2020 [cited 2022 January 2]. Available from: https://www.iqair.com/world-air-quality-report.
  • 3. World Health Organization. How air pollution is destroying our health. 2018 [cited 2022 January 2]. Available from:https://www.who.int/news-room/spotlight/how-air-pollution-is-destroying-ourhealth.
  • 4. EPA. Criteria ait pollutants. 2021 [cited 2022 January 2]. Available from: https://www.epa.gov/criteria-air-pollutants.
  • 5. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 2016;21:65. doi:10.4103/1735-1995. 189646.
  • 6. Gümrükçüoğlu M. Urban air pollution monitoring by using geographic information systems: a case study from Sakarya, Turkey. Carpathian Journal of Earth and environmental sciences. 2011 [cited 2022 January 2];6(2):73-84. Available from:https://www.researchgate.net/publication/260350178_Urban_Air_Pollution_Monitoring_By_Using_Geographic_Information_Systems_A_Case_Study_From_Sakarya_Turkey
  • 7. EPA. Basic information about NO2. 2021 [cited 2022 January 2]. Available from: https://www.epa.gov/no2-pollution/basicinformation-about-no2.
  • 8. Brook RD, Newby DE, Rajagopalan S. The global threat of outdoor ambient air pollution to cardiovascular health: time for intervention. JAMA Cardiology. 2017;2(4):353-4. doi:10.1001/jamacardio.2017.0032.
  • 9. EU. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Communities 2008 [cited 2022 January 2];152:1-43. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.
  • 10. Regulation of Air Quality Assessment and Management. 2008 [cited 2022 January 2]. Available from: https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=12188&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5.
  • 11. World Health Organization. WHO Expert Consultation: Available evidence for the future update of the WHO Global Air Quality Guidelines (AQGs). 2015 [cited 2022 January 2]. Available from: https://www.euro.who.int/__data/assets/pdf_file/0013/301720/Evidence-future-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf.
  • 12. Lyons R, Doherty R, Reay D, Shackley S. Legal but lethal: Lessons from NO2 related mortality in a city compliant with EU limit value. Atmospheric Pollution Research. 2020;11(6):43-50. doi:10.10160/j.apr.2020.02.016.
  • 13. World Health Organization. Regional Office for Europe. Health risks of air pollution in Europe–HRAPIE project Recommendations for concentration– response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. Copenhagen: WHO Regional Office for Europe; 2013 [cited 2022 January 2]:10. Available from: https://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf.
  • 14. World Health Organization. Health References impact assessment of air pollution: AirQ+ life table manual, December 2020 (No. WHO/EURO: 2020-1559-41310-56212). World Health Organization. Regional Office for Europe. 2020. [cited 2022 January 2] Available from: https://apps.who.int/iris/bitstream/handle/10665/337683/WHO-EURO-2020-1559-41310-56212-eng.pdf?sequence=1&isAllowed=y.
  • 15. World Health Organization. European centre for environment and health AirQ+: software tool for health risk assessment of air pollution. Bonn (Germany): WHO Regional Office for Europe. 2019 [cited 2022 January 2]. Available from: http://www.euro.who.int/en/health-topics/environment-and-health/air-qualityactivities/airq-software-tool-for-health-risk-assessment-of-air-pollution.
  • 16. Mudu P, Gapp C, Dunbar M. AirQ+: example of calculations (No. WHO/EURO: 2018-2965-42723-59596). World Health Organization.Regional Office for Europe. 2018 [cited 2022 January 2]. Available from: https://www.euro.who.int/__data/assets/pdf_file/0004/371551/AirQ-Examples-of-calculations_ENG.pdf.
  • 17. Sakarya Governorship. Sakarya İli 2018 Yili Çevre Durum Raporu. 2019 [cited 2022 January 2]. Available from: https://webdosya.csb.gov.tr/db/ced/icerikler/sakarya_-cdr2018-20191003171221.pdf.
  • 18. Sakarya Governorship. Sakarya İli 2019 Yili Çevre Durum Raporu. 2020 [cited 2022 January 2]. Available from: https://webdosya.csb.gov.tr/db/ced/icerikler/sakarya_-cdr2019-20201207205637.pdf.
  • 19. Ministery of Environment, Urbanisation and Climate Change. National Air Qualıty Monitoring Network. 2022 [cited 2021 Dec 1]. Available from: https://sim.csb.gov.tr/.
  • 20. Toscano D, Murena F. The historical trend of air pollution and ıts ımpact on human health in Campania Region (Italy). Atmosphere. 2021;12(5):553. doi:10.3390/atmos12050553.
  • 21. Kavuncuoğlu D, Yilmaz S, Koşan Z. Erzurum’da 2016-2018 yillarinda NO2 düzeylerinin mortalite üzerine etkisi. ESTÜDAM Halk Sağlığı Dergisi. 2021;6(2):114-22. doi:10.35232/estudamhsd.855684.
  • 22. Right to Clean Air Platform. Dark repot. 2020 [cited 2022 January 2]. Available from: https://www.temizhavahakki.com/wp-content/uploads/2020/09/Dark-Report-2020Vfinal.pdf.
  • 23. Fattore E, Paiano V, Borgini A, Tittarelli A, Bertoldi M, Crosignani P, Fanelli R. Human health risk in relation to air quality in two municipalities in an industrialized area of Northern Italy. Environmental Research. 2021;111(8):1321-7. doi:10.1016/j.envres.2011.06.012.
  • 24. Rovira J, Domingo JL, Schuhmacher M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of The Total Environment. 2020;703:135538. doi:10.1016/j.scitotenv.2019.135538.
  • 25. Mirzaei A, Tahriri H, Khorsandi B. Comparison between AirQ+ and BenMAP-CE in estimating the health benefits of PM 2.5 reduction. Air Quality, Atmosphere and Health. 2021;14(6):807-15. doi:10.1007/s11869-021-00980-5.
  • 26. Nursan C, Muge AT, Cemile D, Pinar T, Sevin A. Parent's knowledge and perceptions of the health effects of environmental hazards in Sakarya, Turkey. J Pak Med Assoc. 2014 [cited 2022 January 2];64(1):38-41. Available from: https://www.jpma.org.pk/PdfDownload/5738
  • 27. Arslan O, Akyürek Ö. Spatial modelling of air pollution from PM10 and SO2 concentrations during winter season in Marmara Region (2013-2014). International Journal of Environment and Geoinformatics. 2018 [cited 2022 January 2];5(1):1-16. Available from: https://dergipark.org.tr/tr/download/article-file/452620
  • 28. Kahraman AC, Sivri N. Comparison of metropolitan cities for mortality rates attributed to ambient air pollution within the context of SDGS using the AirQ model. 2021. doi:10.21203/rs.3.rs-838069/v1.
  • 29. Önal AE, Palanbek S, Pacci SN, Çağlayan Ç. Marmara bölgesi NO2 değerlerinin mortalite üzerine etkisi. In 3. International 21. National Public Health Congress. 2019 [cited 2022 January 2]. Available from: https://uhsk.org/2019/images/KONGRE2019.pdf
  • 30. Ministery of Environment, Urbanisation and Climate Change. Turkey environmental problems and priorities evaluation report. ISBN:978-625-7076-11-1, Publication No:47,2020 [cited 2022 January 2]. Available from: https://webdosya.csb.gov.tr/db/ced/icerikler/tu-rk-yecevresorunlariveoncel-kler-_2020-20210401124420.pdf
ESTÜDAM Halk Sağlığı Dergisi-Cover
  • ISSN: 2564-6311
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Eskişehir Osmangazi Üniversitesi
Sayıdaki Diğer Makaleler

BİRİNCİ BASAMAKTA SAĞLIK HİZMETİ VERİRKEN ÇEVRE ÖYKÜSÜ ALMA: FARKINDALIK, TUTUM VE DAVRANIŞ; KESİTSEL BİR ÇALIŞMA

Yağmur KÖKSAL YASİN, Mehmet Oğuz TÜRKMEN, Aysima BULCA ACAR, Emine Didem EVCİ KİRAZ

TÜKETİCİLERDE BESİN ETİKETİ OKUMA ALIŞKANLIĞININ DEĞERLENDİRİLMESİ: ELAZIĞ İLİ ÖRNEĞİ

Osman KURT, Edibe PİRİNÇCİ, Elifnur ÇİMEN, Edanur BALALAN, Özge AKGÜN, Ayşe Ferdane OĞUZÖNCÜL, Süleyman Erhan DEVECİ

ÜNİVERSİTE ÇALIŞANLARINDA SİBERKONDRİ VE İLİŞKİLİ ETMENLER

Süleyman Utku UZUN, Mehmet ZENCİR

SAKARYA'DA 2018 VE 2019 YILLARINDA AIRQ+ YAZILIMI KULLANILARAK NO2 HAVA KİRLETİCİSİNE ATFEDİLEN MORTALİTENİN TAHMİNİ

Kadir ULUTAŞ

İLAHİYAT FAKÜLTESİ ÖĞRENCİLERİNİN ORGAN BAĞIŞINA İLİŞKİN TUTUM VE DAVRANIŞLARI

Çiğdem TEKİN, Ayşe GÖKÇE, Ali ÖZER

BEŞ YAŞ ALTI ÇOCUKLARIN EBEVEYNLERİNDE AŞI TEREDDÜT ÖLÇEĞİNİN GEÇERLİLİK VE GÜVENİRLİĞİ

Gonca SOYSAL, Recep AKDUR, Mustafa Kemal YÖNTEM

COVID-19 TANILI HASTALARIN TEDAVİ VE BAKIMINI YAPAN SAĞLIK PERSONELLERİNİN ANKSİYETE VE E-SAĞLIK OKURYAZARLIK DÜZEYLERİ İLE ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ

Dilek ŞAYIK, Anıl UÇAN

ANKARA'DAKİ EĞİTİM ARAŞTIRMA VE DEVLET HASTANELERİNDE SU YÖNETİMİ

Derya ÇAMUR, Gamze KETREZ, İbrahim Sefa GÜNEŞ, Fatma Sena KONYALIOĞLU, Hüseyin İLTER, Murat TOPBAŞ

TÜRKİYE’DE COVID-19 AŞILAMA HIZI İLE SAĞLIĞIN SOSYAL BELİRLEYİCİLERİ ARASINDAKİ İLİŞKİ

Güliz AYDEMİR ACAR