YENİDEN BİRLEŞTİRİLMİŞ PROTEİNLERİN PROTEAZ KULLANILMADAN SAFLAŞTIRILMASINDA İNTEİN ARACILI AYIRMA SÜREÇLERİNİN İNCELENMESİ ÜZERİNE BİR DERLEME

Bu çalışmada, yapay proteinlerin proteaz kullanılmadan saflaştırılması süreçlerinde yararlanılan inteinlerin ayrılma aktivitelerinin artırılması için inteinler ve hedef proteinler üzerinde yapılan araştırmalar incelenmiştir. İntein kullanımı ile protein ayrışması üzerinde yapılan araştırmalar, intein ve protein saflaştırma süreçlerinin daha verimli hale getirilmesini amaçlamaktadır. In vivo ve in vitro olarak gerçekleşen süreçlerde, intein ve hedef protein içeren poliklonal PCR ürününün çoğaltılması ve ekspres plazmidlerin klonlanan suşlara taşınması işlemleri yapılmaktadır. İnteinin proteinden ayrılma aktivitesi ve ayrılma oranı sabiti kinetikleri, değişik pH, sıcaklık ve süzme sürelerinde belirlenmekte ve hedef proteinlere ilişkili olarak karşılaştırılmaları yapılmaktadır. Araştırmalarda değişik mikrobiyal doğal ve yapay inteinlerin protein ayrıştırma aktiviteleri incelenmiş ve yapay Nostoc punctiforme DnaE C-inteinlerinin ayrışma aktivitelerinin en yüksek olduğu belirlenmiştir. Çalışmalar amino asit eklenmesine daha yatkın olması nedeniyle C-inteinler üzerinde yoğunlaşmaktadır.

A REVIEW ON INTEIN MEDIATED RECOMBINANT PROTEIN PURIFICATION PROCESSES WITHOUT USE OF PROTEASE

In this study, researches on inteins and recombinant proteins to increase splitting activity of inteins that are utilised in recombinant protein purification processes without use of protease have been investigated. Researches on protein cleaving by use of inteins are aimed to make inteins and protein purification processes become more effective. The processes conducted in vivo ve in vitro, intein and target protein included polyclonal PCR products are cloned and the expressed plasmids are fused to cloned strains. Kinteics of activity of cleaving and activity of cleaving rates have been determined in different pH, temperature and filtration times.   In the researches, protein cleaving activity of the different microbial natural and engineered inteins have been investigated and cleaving activity of recombinant Nostoc punctiforme DnaE C-inteins were found to be very high. The studies have been focused on the C-inteins due to recepient ability of the amino acid additions.

___

  • [1] Aranko AS, Züger S, Buchinger E, Iwaï H. In Vivo and In Vitro Protein Ligation by Naturally Occurring and Engineered Split DnaE Inteins. PLoS ONE, 4(4): e5185, 2009. http://doi.org/10.1371/journal.pone.0005185
  • [2] Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification. 48: 1-13, 2006. doi:10.1016/j.pep.2005.12.002.
  • [3] Banki MR, Feng L, Wood DW. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods. 2: 659-661, 2005. doi:10.1038/nmeth787.
  • [4] Banki MR, Gerngross TU, Wood DW. Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci. 14:1387–1395, 2005. doi: 10.1110/ps.041296305.
  • [5] Belfort M, Derbyshire V, Stoddard BL, Wood DW. Homing endonucleases and inteins. Berlin Heidelberg, Springer. 2005. New York.
  • [6] Caubin J, Martin H, Roa A, Cosano I, Pozuelo M, de La Fuente JM, Sanchez-Puelles JM, Molina M, Nombela C. Choline-binding domain as a novel affinity tag for purification of fusion proteins produced in Pichia pastoris. Biotechnology and Bioengineering. 74, 164-171, 2001.
  • [7] Coolbaugh MJ, Wood DW. Purification of Escherichia coli proteins using a self-cleaving chitin-binding affinity tag. Methods in Molecular Biology. 1177: 47-58, 2014. doi:10.1007/978-1-4939-1034-2_4.
  • [8] Coolbaugh MJ. Recent advances in self-cleaving ıntein tag technology, PhD Dissertation, The Graduate School of The Ohio State University Graduate Program in Chemical Engineering. The Ohio State University Columbus OH. 2015.
  • [9] Chong S, Xu MQ. Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. 272: 15587–155890, 1997. doi: 10.1074/jbc.272.25.15587.
  • [10] Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. 192: 271–281, 1997.
  • [11] Elleuche S, Nolting N, Pöggeler S. Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol. 87: 479–489, 2010.
  • [12] Fong BA, Gillies AR, Ghazi I, LeRoy G, Lee KC, Westblade LF, Wood DW. Purification of Escherichia coli RNA polymerase using a self-cleaving elastin-like polypeptide tag. Protein science: a publication of the Protein Society. 19: 1243-1252, 2010. doi:10.1002/pro.403.
  • [13] Ford CF, Suominen I, Glatz CE. Fusion tails for the recovery and purification of recombinant proteins. Protein Expr Purif. 2: 95–107, 1991.
  • [14] Ge X, Yang DS, Trabbic-Carlson K, Kim B, Chilkoti A, Filipe CD. Self-cleavable stimulus responsive tags for protein purification without chromatography. J Am Chem Soc. 127: 11228–11229, 2005. doi: 10.1021/ja0531125.
  • [15] Gillies AR, Hsii JF, Oak S, Wood DW. Rapid cloning and purification of proteins: gateway vectors for protein purification by self-cleaving tags. Biotechnol Bioeng. 101: 229–240, 2008. doi: 10.1002/bit.21974.
  • [16] Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E. Inteins: structure, function, and evolution. Annu Rev Microbiol. 56: 263–287, 2002. doi: 10.1146/annurev. micro.56.012302.160741.
  • [17] Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K. and Anraku, Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265, 6726–6733, 1990.
  • [18] Kane PM, Yamashiro, CT, Wolczyk DF, Neff N, Goebl M, Stevens TH. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science. 250: 651-657, 1990.
  • [19] Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu MQ. Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. 231,1–13, 1999. doi: 10.1016/S0378-1119(99)00103-1.
  • [20] Mills KV, Dorval D M, Lewandowski KT. Kinetic Analysis of the Individual Steps of Protein Splicing for the Pyrococcus abyssi PolII Intein The Journal of Biological Chemistry. 280: 4, 2714–2720, 2005. DOI 10.1074/jbc.M412313200
  • [21] Mills KV Johnson MA, Perler FB. Protein Splicing: How Inteins Escape from Precursor Proteins. The Journal of Biological Chemistry. 289(21): 14498–14505, 2014. http://doi.org/10.1074/jbc.R113.540310
  • [22] Miraula M, Enculescu C, Schenk G, Mitić N. Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins. American Journal of Molecular Biology. 5: 42-56, 2015.
  • [23] LaVallie ER, McCoy JM. Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol. 6: 501–506, 1995.
  • [24] Li Y. Self-cleaving fusion tags for recombinant protein production. Biotechnology Letters. 33: 869-881, 2011. doi:10.1007/s10529-011-0533-8.
  • [25] Perler FB. Protein Splicing Mechanisms and Applications. IUBMB Life. 57(7): 469 – 476, 2005.
  • [26] Singleton SF, Simonette RA, Sharma NC, Roca A. Intein-mediated affinity-fusion purification of the Escherichia coli RecA protein. Protein Expr Purif. 26: 476–488, 2002. doi: 10.1016/S1046-5928(02)00571-5.
  • [27] Saez NJ, Vincentelli R. High-throughput expression screening and purification of recombinant proteins in Escherichia coli. Methods in Molecular Biology. 1091: 33-53, 2014. doi:10.1007/978-1-62703-691-7_3.
  • [28] Shah N H, Muir TW. Inteins: nature's gift to protein chemists. Chem. Sci. 5: 446–461, 2014.
  • [29] Shi C, Meng Q, Wood DW. A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Applied Mand Biotechnology. 97: 829-835, 2013. doi:10.1007/s00253-012-4601-3.
  • [30] Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. Design of a split intein with exceptional protein splicing activity. J Am Chem Soc. 138: 2162–2165, 2016.
  • [31] Terpe, K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 60: 523–533, 2003.
  • [32] Wood DW. Simplified protein purification using engineered self-cleaving affinity tags. J. Chem. Technol. Biotechnol. 78: 103–110, 2003. doi:10.1002/jctb.762
  • [33] Wood DW. Non-Chromatographic Recombinant Protein Purification by Self-Cleaving Purification Tags, Separation Science and Technology, 45(15): 2245-2257, 2010. doi: 10.1080/01496395.2010.507665
  • [34] Wood D, Wu W, Derbyshire V. Belfort G, Belfort M. A Genetic System Yields Self-Cleaving Inteins for Bioseparations. Nature Biotechnology. 17: 889-892, 1999.
  • [35] Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G. Optimized single-step affinity purification with a self cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog. 16: 1055–1063, 2000.
  • [36] Wood DW. Non-chromatographic recombinant protein purification by self-cleaving purification tags. Separation Science and Technology. 45: 2245-2257, 2010.
  • [37] Wood DW, Camarero JA. Intein applications: from protein purification and labeling to metabolic control methods. J. Biol. Chem. 289: 14512–14519, 2014.
  • [38] Zhao Z, Lu W, Dun B, Jin D, Ping S, Zhang W, Chen M, Xu MQ, Lin M. Purification of green fluorescent protein using a two-intein system. Appl Microbiol Biotechnol. 77: 1175–1180, 2008. doi: 10.1007/s00253-007-1233-0.-009-9921-8