BAZI ÖNEMLİ SALEP ORKİDESİ TÜRLERİNİN TOPLAM FENOLİK VE FLAVONOİT İÇERİKLERİNİN, ANTİOKSİDAN VE ANTİMİKROBİYAL AKTİVİTELERİNİN BELİRLENMESİ

Bu çalışmada; Anacamptis morio, Anacamptis pyramidalis, Neotinea tridentata, Ophrys mammosa, Ophrys lutea ve Ophrys speculum salep orkidelerinin sekonder metabolitleri, toplam fenolik (TPC) ve flavonoit bileşikleri (TFC), antioksidan ve antimikrobiyal aktiviteleri ölçülmüştür. DPPH serbest radikal temizleme yöntemi ile bitkilerin n-hekzan, kloroform, methanol ve su özütlerinde antioksidan aktiviteler belirlenmiştir. Antimikrobiyal aktiviteler Broth mikrodilüsyon yöntemi ile belirlenmiştir. Özütler yedi klinik patojen bakteriye ve iki fungusa karşı taranmıştır. Fitokimyasal taramada kumarinler, flavanoitler, flavanonlar, kardiyak glikozitler, proteinler ve kinonlar bulunduğunu ortaya çıkarılmıştır. Özütlerin değişken TPC ve TFC değerlerine sahip olduğu gözlenmiştir (TPC 4.46 ± 0.19–45.83 ± 1.86 mg gallik asit eşdeğer/g kuru ağırlık ve TFC 0.67 ± 0.04–8.64 ± 0.37 mg kuersetin eşdeğer/g kuru ağırlık). Çalışmada O. speculum türünün %35.12 ile en yüksek antioksidan aktiviteye sahip olduğu ve onu %33.17 ile O. mammosa türünün takip ettiği belirlenmiştir. Bütün türlerde kloroform özütlerinin en yüksek antioksidan ve antimikrobiyal aktiviteye sahip olduğu görülmüştür. Kloroform özütlerinin bu biyoaktiviteleri toplam fenolik ve flavanoit bileşikleri ile pozitif olarak ilişkilidir. MİK konsantrasyonları 0.156-20 mg/mL oranındadır. Bu çalışma, kullanılan salep orkidelerinin özellikle kloroform özütlerinin, potansiyel antioksidan ve antimikrobiyal kaynakları olabileceğini göstermektedir.  

DETERMINATION OF TOTAL PHENOLIC AND FLAVONOID CONTENTS, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF SOME IMPORTANT SALEP ORCHIDS

ABSTRACT  In this study we evaluated the secondary metabolites, total phenolic (TPC) and flavonoid contents (TFC), antioxidant and antimicrobial activities of salep orchids, Anacamptis morio, Anacamptis pyramidalis, Neotinea tridentata, Ophrys mammosa, Ophrys lutea, and Ophrys speculum. DPPH free radical scavenging assay was used to determine the antioxidant activities of n-hexane, chloroform, methanol and water extracts of the plants. The antimicrobial activities were also determined by the Broth micro-dilution method. The extracts were studied for antimicrobial activity by the Minimum Inhibitory Concentration (MIC) approach against seven clinical pathogenic bacteria and two fungi. Phytochemical screening revealed that the presences of coumarins, flavonoids, flavanones, cardiac glycosides, proteins and quinones. The extracts had variable TPC and TFC, with values of 4.46 ± 0.19–45.83 ± 1.86 mg gallic acid equivalent/g dry weight and 0.67 ± 0.04–8.64 ± 0.37 mg quercetin equivalent/g dry weight respectively. O. speculum had the highest (35.12%) antioxidant activity, followed by O. mammosa (33.17%). Chloroform extracts of all species showed significant antioxidant and antimicrobial activity. These bioactivities of the chloroform extracts were positively associated with the total phenolic and flavonoid contents. The MIC concentrations ranged from 0.156–20 mg/mL. The present investigation shows that the extracts of these species, especially chloroform extracts, could be used as potential antioxidant and antimicrobial sources.  

___

  • [1] Dressler RL. Phylogeny and classification of the orchid family. Cambridge (UK): Cambridge University Press Publishers, 1994.
  • [2] Bulpitt CJ. The uses and misuses of orchids in medicine. Occasional Paper. QJM 2005; 98:625-631.
  • [3] Kreutz CAJ. Türkiye orkideleri (botanik özellikleri, ekolojik özellikleri, doğal yayılış alanları, yaşam tehditleri, koruma önlemleri). Turkey: Rota Yayınları, 2009. pp.848.
  • [4] Sezik E, İşler S, Orhan Ç, Deniz Gİ, Güler N, Aybeke M, Üstün O. Salep ve orkidelerin tahribi. Ankara: TÜBİTAK. Project No: TBAG-Ç.SEK/23(103T008). 2007.
  • [5] Flückiger FA, Hambury D. Pharmacographia. A history of the principal drugs of vegetable origin met with in Great Britain and British India. London: Macmillan, 1879.
  • [6] Sezik E. Orkidelerimiz Türkiye’ nin orkideleri. Istanbul: Sandoz Kültür Yayınları, 1984.
  • [7] Baytop T. Türkiye’ de bitkilerle tedavi: Geçmişte ve bugün. Istanbul: Nobel Tıp Kitapevleri, 1999. pp.480.
  • [8] Jalal JS, Kumar P, Pangtey YPS. Ethnomedicinal orchids of Uttarakhand, Western Himalaya. Ethnobotanical Leaflets 2008; 12:1227-30.
  • [9] Bulpitt J, Li Y, Bulpitt PF, Wang J. The use of orchids in Chinese medicine. JRSM 2007; 100(12):558-563.
  • [10] Abah SE, Egwari LO. Methods of extraction and antimicrobial susceptibility testing of plant extracts. AJBAS 2011; 3(5):205-209.
  • [11] Kala S, Senthilkumar S. Antimicrobial activity of Acanthephippium bicolor Lindley. Malays J Microbiol 2010; 6(2):140-148.
  • [12] Dhyani A, Nautiyal BP, Nautiyal MC. Importance of Astavarga plants in traditional systems of medicine in Garhwal, Indian Himalaya. IJBESM 2010; 6(1-2):13-19.
  • [13] Rosa MPG. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plant Res 2010; 4(8):592-638.
  • [14] Özcan T, Akpınar Bayizit A, Yılmaz Ersan L, Delikanlı B. Phenolics in human health. Int J Chem Eng Appl 2014; 5(5):393-396.
  • [15] Fernebro J. Fighting bacterial infections - Future treatment options. Drug Resist Update 2011; 14:125-139.
  • [16] Weinreb O, Mandel S, Amit T, Moussa B, Youdim H. Neurological mechanisms of green tea polyphenols in alzheimer's and parkinson's diseases. J Nutr Biochem 2004; 15:506-516.
  • [17] Dai Q, Borenstein AR, Wu Y. Fruit and vegetable juices and Alzheimer’s disease: The kame project. Am J Clin Nutr 2006; 19:751-759.
  • [18] Sahaya SB, Sarmad M, Servin WP, Chitra DB. Preliminary phytochemical screening, antibacterial and antioxidant activity of Eria pseudoclavicaulis Blatt. -An endemic orchid of Western Ghats. AJPTR 2012; 2(6):518-525.
  • [19] Sandrasagaran UM, Subramaniam S, Murugaiyah V. New perspective of Dendrobium crumenatum orchid for antimicrobial activity against selected pathogenic bacteria. Pak J Bot 2014; 46(2):719-724.
  • [20] Nguyen HC, Lin KH, Huang MY, Yang CM, Shih TH, Hsiung TC, Lin YC, Tsao FC. Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. Not Bot Horti Agrobo 2018; 46(2):457-465.
  • [21] Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: Molecular and cellular mechanisms. HT 2003; 42(6):1075-1081.
  • [22] Patlevic P, Vaskova J, Svorc PJr, Vasko L, Svorc P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr Med Res 2016; 5:250-258.
  • [23] Harborne JB. Phytochemical methods: A guide to modern techniques of plant analysis. London: Chapman & Hall, 1973.
  • [24] Raaman N. Phytochemical techniques. New Delhi: New India Publishing Agency, 2006.
  • [25] Radhika B, Murthy JVVSN, Nirmala Grace D. Preliminary phytochemical analysis & antibacterial activity against clinical pathogens of medicinally important orchid Cymbidium aloifolium (L.) Sw. Int J Pharm Sci Res 2013; 4(10):3925-3931.
  • [26] Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 1977; 28(1):49-55.
  • [27] Matejić JS, Džamić AM, Mihajilov Krstev TM, Ranđelović VN, Krivošej ZĐ, Marin PD. Total phenolic and flavonoid content, antioxidant and antimicrobial activity of extracts from Tordylium maximum. JAPS 2013; 3(1):55-59.
  • [28] Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 1995; 28:25-30.
  • [29] Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standart-Second Edition. CLSI Document M27-A2. Wayne, Pennsylvania, 2002.
  • [30] Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard-Ninth Edition. CLSI Document M07-A9. Wayne, Pennsylvania, 2012.
  • [31] Crozier A, Clifford MN, Ashihara H. Plant secondary metabolites: occurrence, structure and role in the human diet. New Jersey: Blackwell Publishing, 2008.
  • [32] Peng J, Xu Q, Xu Y, Qi Y, Han X, Xu L. A new anticancer dihydroflavanoid from the root of Spiranthes australis (R. Brown) Lindl. Nat. Prod. Res. 2007; 21: 641-645.
  • [33] Gutierrez, RMP. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plants Res. 2010; 592-638.
  • [34] Faraji Z, Nikzad H, Parivar K, Nikzad M. The effect of aqueous extract of Salep Tubers on the structure of testis and sexual hormones in male mice. J Jahrom Univ Med Sci 2013; 11(1):71-76.
  • [35] Yang HS, Han DK, Kim JR, Sim JC. Effects of α-tocopherol on cadmium-induced toxicity in rat testis and spermatogenesis. J Korean Med Sci 2006; 21(3):445.
  • [36] Luciane YY, Tiago BM, Fernanda D, Josemeyre B, Elza II. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design, Int J Food Sci Nutr 2012; 63:8, 978-986, DOI: 10.3109/09637486.2012.690026
  • [37] Haridas R, Manorama S, Thekkan S. Evaluation of antimicrobial activity of medicinal orchid Malaxis rheedei sw against some selected pathogens. IJAMR 2016; 3(6):1548-1552.
  • [38] Cozzolino S, Widmer A. Orchid diversity: An evolutionary consequence of deception? Trends Ecol Evol 2005; 20(9):487-94.