YÜKSEK HIZLI ÇARPMA YÜKLERİNE MARUZ 6061 T651 ALÜMİNYUM LEVHALARIN KARAKTERİZASYONU

Kinetik enerjiye sahip mermilere karşı, tek veya çok katmanlı metal zırh sistemlerinin gösterdiği balistik davranış, çok sayıda deneysel, teorik ve sayısal çalışmayla araştırılmıştır. Bu çalışmada, 9 mm mermilerle üzerine atış yapılan 6061 T651 alüminyum levhalar incelenmiştir. Mikroyapı incelemesi optik mikroskop kullanılarak gerçekleştirilmiştir. Levhaların mukavemet davranışlarının belirlenmesinde mikrosertlik değerleri kullanılmıştır. Levha kalınlığı ve çarpma hızının mikroyapı üzerindeki etkisi değerlendirilmiştir. Çalışma sonucunda; ince levhaların, düşük çarpma hızlarında bile yüksek nüfuziyet derinliğiyle deformasyon sertleşmesine daha duyarlı olduğu, kalın levhaların ise düşük nüfuziyeti derinliğiyle termal yumuşamaya eğilimli olduğu değerlendirilmiştir. Maksimum sertlik değerleri her iki levha kalınlığında da çarpma bölgesinin hemen altında elde edilmiştir.

Characterization of 6061 T651 aluminum plates subjected to high-velocity impact loads

Ballistic response of single or multi-layered metal armor systems subjected to kinetic energy projectiles was investigated in many experimental, theoretical and numerical studies.In this study, 6061 T651 aluminum plates impacted by 9 mm bullets were investigated. Microstructural investigations have been carried out using optical microscopy. Microhardness values were used to determine the strength behavior of the plates. Influence of the plate thickness and impact velocity on the microstructure has been evaluated. It was concluded from the study that thinner plates are more prone to deformation hardening with high penetration depth values even at low impact velocities while thick plates are more susceptible to thermal softening with less penetration depths. Maximum hardness values were obtained just below the impact zone in both plate thicknesses.

___

  • Andersen, C. and Dannemann, K. (2001). Deformation and damage of two aluminum alloys from ballistic impact, Proceedings of the 12th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter, Atlanta, June 24–9.
  • Atroshenko, S.A., Naumova, N.S. and Novikov, S.A. (2006). Influence of high-velocity impact on metals, Int. J. Impact Engineering 33, 62-7.
  • Borvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S. and Langseth, M. (2005). Experimental and numerical study on the perforation of AA6005-T6 panels, Int. J. Impact Engineering, 32, 35-64.
  • Borvik, T., Clausen, A.H., Hopperstad, O.S. and Langseth, M. (2004). Perforation of AA5083-H116 aluminium plates with Uygulamalı Bilimler ve Mühendislik conical-nose experimental study, Int. J. Impact Engineering, 30, 367-84. projectiles
  • Couque, H., Nicolas, G. and Altmayer, C. (2007). Relation between shear banding and conventional tungsten alloys, Int. J. Impact Engineering, 34, 412-23. of
  • Forrestal, M.J. and Piekutowski, A.J. (2000). Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s, Int. J. Impact Engineering, 24, 57-67.
  • Gupta, N.K., Iqbal, M.A. and Sekhon, G.S. (2006). Experimental and numerical studies on the behavior of thin aluminium plates subjected to impact by blunt and hemispherical-nosed projectiles, Int. J. Impact Engineering, 32, 1921-44.
  • Gupta, N.K., Iqbal, M.A. and Sekhon, G.S. (2007). Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates, Int. J. Solids and Structures 44, 3411-39.
  • Hayun, S., Dariel, M.P., Frage, N. and Zaretsky, E. (2010). The high-strain-rate dynamic response composites: The effect of microstructure, Acta Materialia 58, 1721-31.
  • Jena, P.K., Mishra, B., Kumar, K.S. and Bhat, T.B. (2010). An experimental study on the ballistic impact behavior of some metallic armour against 7.62 mm deformable projectile, Material and Design 31, 3308-16.
  • Karamış, M.B. (2007). Tribology at high- velocity impact, Tribology 40, 98-104.
  • Martinez, F., Murr, L.E., Ramirez, A., Lopez, M.I. and Gaytan, S.M. (2007). Dynamic deformation microstructures associated with ballistic plug formation and fracture in Ti-6Al-4V targets, Engineering A, 454–455, 581–89. shear Materials Science and
  • Owolabi, G.M., Odeshi, A.G., Singh, M.N.K. and Bassim, M.N. (2006). Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites, Materials Science and Engineering A 457, 114–9.
  • Piekutowski, A.J., Forrestal, M.J., Poormon, K.I. and Warren, T.L. (1999). Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s, Int. J. Impact Engineering, 23, 723-34.
  • Rosakis, A.J. and Ravichandran, G. (2000). Dynamic failure mechanics, Int. J. Solids and Structures 37, 331-48.
  • Warren, T.L. and Poormon, K.I. (2001). Pene- tration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projec- tiles at oblique angles: experiments and simulations, Int. J. Impact Engineering, 25, 993-1022.