A PLATFORM FOR ULTRA-COLD EXTERNAL CAVITY DIODE LASERS

We report on the construction of a platform for ultra-cold tuneable external cavity diode laser system working well below the room temperature (-75 0C) under rough vacuum (28mBar). A theoretical procedure is also presented to calculate thermal control parameters including heat transfer rate, thermal isolation and heat dissipation of the system. Temperature tuning capability of the system was examined utilizing a 658nm (AlGaInP) single mode laser diode. With the system designed the temperature dependent tuning range was expended to almost two fold while halving the bandwidth regarding to its room temperature performances.

___

  • [1] Wieman CE, Holberg L. Using diode lasers for atomic physics. Review of Scientific Instruments. 1991; 62: 1-20.
  • [2] Galbacs G. A review of applications and experimental instruments related to diode laser atomic spectroscopy. Applied Spectroscopy Reviews. 2006; 41: 259-303.
  • [3] Affolderbach C, Miletti G. A compact laser head with high-frequency stability for atomic Rb clocks and optical instruments. Review of Scientific Instruments. 2008; 79: 1-5.
  • [4] Nguyen AT, Wang LB, Schauer MM, Torgerson JR. Extended temperature tunning of an ultraviolet diode laser for trapping and cooling single Yb+ ions. Review of Scientific Instruments. 2010; 81: 053110.
  • [5] Cozijn FMJ, Biesheuvel J, Flores AS, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij JCJ. Laser cooling of beryllium ions using frequency-doubled 626nm diode laser. Optics Letters. 2013; 38 (13): 2370-2372.
  • [6] Ying K, Niu Y, Chen D, Cai H, Qu R, Gong S. White light cavity via modification of linear and nonlinear dispersion in N-type atomic system. Optics Communications. 2015; 342: 189-192.
  • [7] Zhao YN, Zhang J, Stuhler J, Schuricht G, Lison F, Lu ZH, Wang LJ. Sub-Hertz frequency stabilisation of commercial diode laser. Optics Communications. 2010; 283: 4696-4700.
  • [8] Fleming MW, Mooradian A. Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE Journal of Quantum Electronics. 1981; QE-17 (1): 44-59.
  • [9] Arnold AS, Wilson JS, Boshier MG. A simple extended-cavity diode laser. Review of Scientific Instruments. 1997; 69 (3): 1236-1239.
  • [10] Loh H, Lin Y, Teper I, Cetina M, Simon J, Thompson JK, Vuletic V. Influence of grating parameters on the linewidths of external-cavity diode lasers. Applied Optics. 2006; 45 (36): 9191-9197.
  • [11] Horstjann H, Nenakhov V, Burrows JP. Frequency stabilisation of blue extended cavity diode lasers by external cavity optical feedback. Applied Physics B. 2012; 106: 261-266.
  • [12] Thomson DJ, Scholten RE. Narrow linewidth tuneable external cavity diode laser using wide bandwidth filter. Review of Scientific Instruments. 2012; 83: 023107.
  • [13] Mroziewicz B, Kowalczyk E, Dobrzanski L, Ratajczak J, Lewandowski SJ. Extenal cavity diode lasers with E-beam silicon diffraction gratings. Optical and Quantum Electronics. 2007; 39: 585-595.
  • [14] Hieta T, Vainio M, Mouser C, Ikenon E. External cavity lasers based a volume holographic grating at normal incidence for spectroscopy n the visible range. Optics Communications. 2009; 282: 3119-3123.
  • [15] Bennets S, Hardman KS, Debs JE, McDonald GD, Kuhn CCN, Close JD, Robins NP. External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55µm. Optics Express. 2014; 22: 10643-10654.
  • [16] Chuang C, Liao Y, Lin C, Chen S, Grillot F, Lin F. Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions. Optics Express. 2014; 22 (5): 5651-5658.
  • [17] Tombez L, Cappelli F, Schilt S, Di Domenico G, Bartalini S, Hofstetter D. Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers. Applied Physics. Letters. 2013; 103 (3): 1-5.
  • [18] Dutta S, Elliott DS, and Chen YP. Mode-hop free tuning over 135 GHz of external cavity diode lasers without antireflection coating. App. Phys. B. 2012; 106: 629-633.
  • [19] Fletcher CS, Close JD. Extended temperature tuning of an external cavity diode laser. Applied Physics B. 2014; 78: 305-313.
  • [20] Ball H, Lee MW, Gensemer SD, Biercuk MJ. A high-power 626 nm diode laser system for beryllium ion trap. Review of Scientific Instruments. 2013; 84: 113104.
  • [21] Tobias WG, Rosenberg JS, Hurtzler RN. A low-temperature external cavity diode laser for broad wavelength tuning. Review of Scientific Instruments. 2016; 87: 113104.
  • [22] Incopera FP, Dewitt DP, Bergman TL. Fundamentals of heat and mass transfer. 6th ed. New York, NY, USA: Wiley, 2016; 152-155.
  • [23] Welch K. Capture Pumping Technology 2nd Ed. Elsevier. 2001; 15-16.
  • [24] Goldsmid HJ. Introduction to Thermoelectricity. London, LDN, UK: Heidelberg Dordrecht Springer, 2010; 1-3.
  • [25] Teertstra P, Yovanovich MM, Culham JR. Analytical forced convection modelling of plate fin heat sinks. Journal of Electronics Manufacturing. 2001; 10 (4): 253-26.
  • [26] Adeyanju AA, Compton W. Theoretical determination of a thermoelectric module heatsinks sizing. International Journal of Electrical and Power Engineering. 2010; 4 (2): 66-72.
  • [27] Engineering tool box, http://www.engineeringtoolbox.com/dry-air-properties-d_973.html