Assessment on The Accuracy of Piezoelectric Property Calculations of Single Layer Two Dimensional Hexagonal Crystals

The finite difference and the density functional perturbation theory based piezoelectric property calculation methods are applied to the novel two dimensional hexagonal materials named as group II-VI monolayers and transition metal dichalcogenides for the purposes of comparison. The clamped- and relaxed- ion coefficients have been calculated separately to test the accuracy of both methods on electronic and ionic piezoelectric response contributions. While there is no significant difference between the clamped-ion piezoelectric coefficients calculated with these two methods, a notable difference between the values for relaxed-ion piezoelectric coefficients are determined. Considering the results of the density functional perturbation theory given in the previous applications, it has been determined that the consistency of the finite difference method in the ionic contribution calculation do not provide reliable results for some 2D materials. We have predicted that the atomic relaxation for different strain values is not adequate to achieve accurate results for ionic contribution of piezoelectric coefficient. However, on the contrary to the explicit difference in the coefficients calculated with two different approaches, our results clearly show that the piezoelectric potentials of the considered materials can be determined accurately and reliably by both methods. 

___

  • de Jong M, Chen W, Geerlings H, Asta M, Persson K. A. A database to enable discovery and design of piezoelectric materials. Scientific Data 2015; 2: 150053
  • Morten, B, De Cicco G, Prudenziati M. Resonant Pressure Sensor Based on Piezoelectric Properties of Ferroelectric. Thick Films. Sens. Actuators A 1992; 31: 153-158.
  • Jaffe H. Berlincourt D. A, Piezoelectric Transducer. Materials. Proc. IEEE 1965; 53: 1372-1386.
  • Wang Z. L, Song J. H, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006; 312: 242-246.
  • Lopez-Suarez M, Pruneda M, Abadal G, Rurali R. Piezoelectric Monolayers as Nonlinear Energy Harvesters. Nanotechnology 2014; 25: 175401-175405.
  • Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T. F, Hone J, Wang Z. L. Piezoelectricity of Single-Atomic-Layer MoS2 for Energy Conversion and Piezotronics. Nature 2014; 514: 470-474.
  • Blonsky M. N, Zhuang H. L, Singh A. K, Hennig R. G. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. ACS Nano 2015; 9: 9885-9891.
  • Alyörük M. M, Aierken Y, Çakır D, Peeters F. M, Sevik C. Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. J. Phys. Chem. C 2015; 119: 23231- 23237.
  • Fei R, Li W, Li J, Yang L. Giant Piezoelectricity of Monolayer Group IV Monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015; 107: 173104-173108.
  • Li W, Li J. Piezoelectricity in Two-Dimensional Group-III Monochalcogenides. Nano Res. 2015; 8: 3796-3802.
  • Gomes L. C, Carvalho A, Castro Neto A. H. Enhanced Piezoelectricity and Modified Dielectric Screening of Two-Dimensional Group-IV Monochalcogenides. Phys. Rev. B. 2015; 92: 214103.
  • Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z. J, Ye Z, Ye Y, Yin X, Zhang X. Observation of Piezoelectricity in Free- Standing Monolayer MoS2. Nat. Nanotechnol. 2014; 10: 151-155.
  • Sevik C, Çakır D, Gülseren O, Peeters F. M. Peculiar Piezoelectric Properties of Soft Two-Dimensional Materials. J. Phys. Chem. C 2016; 120: 13948-13953.
  • Duerloo K A N, Ong M T, Reed E J, Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012; 3: 2871-2876.
  • Nunes R W, Gonze X. Berry-Phase Treatment of the Homogeneous Electric Field Perturbation in Insulators. Phys. Rev. B. 2001; 63: 155107.
  • Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993; 47: 558-561.
  • Wu X, Vanderbilt D, Hamann D R, Systematic Treatment of Displacements, Strains, And Electric Fields in Density-Functional Perturbation Theory. Phys. Rev. B. 2005; 72: 035105.
  • Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996; 77: 3865-3868.
  • Monkhorst H J, Pack J D, Special Points for Brillouin-Zone Integrations. Phys. Rev. B. 1976; 13: 5188-5192.
  • Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y, Xia H, Zhang S B, Sun H B, Monolayer II-VI Semiconductors: A First-Principles Prediction. Phys. Rev. B. 2015; 92: 115307.
  • Behmann R, Elastic and Piezoelectric Constants of alpha-Quartz. Phys. Rev. 1958; 110: 1060-1061.
  • Lueng C M, Chan H L W, Surya C, Choy C L. Piezoelectric Coefficient of Aluminum Nitride and Gallium Nitride. J. Appl. Phys. 2000; 88: 5360-5363.