SYNTHESIS AND CHARACTERIZATION OF SOME NEW 1,3,4-THIADIAZOLE COMPOUNDS DERIVED FROM α-METHYL CINNAMIC ACID AND THEIR ENERGETICS AND SPECTRAL ANALYSES BASED ON DENSITY FUNCTIONAL THEORY CALCULATIONS

Some novel 1,3,4-thiadiazole compounds derived from α-methyl cinnamic acid was synthesized, in this study. The structures of these compounds were elucidated by using FT-IR, 1H-NMR and 13C-NMR spectroscopic methods. Then, the absorption characteristics of the compounds were also examined by using the UV-Vis spectrophotometer. In addition, the geometrical and electronic properties as well as UV-Vis analyzes of the compounds were theoretically done by using the density functional theory (DFT). The electronic configurations of the compounds substituted F, Cl and methoxy   have been investigated and how to effect chemical reactivity parameters to this configuration have been analyzed by using frontier molecular orbital (FMO) energies. Theoretical calculations were compared and interpreted with experimental results.

___

  • [1] Hu, Y., Li, C-Y., Wang X-M., Yang Y-H, and Zhu H-L. (2014). 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chem. Rev. 2014, 114, 5572−5610.
  • [2] Niu, P., Kang, J., Tian, X., Song, L., Liu, H., Wu, J., Yu, W. and Chang, J. (2014). Synthesis of 2 Amino-1,3,4-oxadiazoles and 2 Amino-1,3,4- thiadiazoles via Sequential Condensation and I2 Mediated Oxidative C−O/C−S Bond Formation. J. Org. Chem. 2015, 80, 1018−1024.
  • [3] S. Jaiswal, S. Sigh, A novel POCl3 catalysed expeditious synthesis and antimicrobial activities of 5-subtituted-2-arylbenzalamino-1,3,4-thiadiazole, Int. J. Eng. Res. Gen. Sci. 2 (6) (2014). October-November.
  • [4] M. Ahmed, J. Jahan, S. Banco, A simple spectrophotometric Methods for the determination of copper in Industrial, Environmental, Biological and Soil, samples using 2, 5-dimercapto 1, 3, 4-thiadiazole, J. Anal. Sci. 18 (2002) 805-810.
  • [5] Alireza Aliabadi, Elham Eghbalian, Amir Kiani, Synthesis and evaluation of the cytotoxicity of a series of 1,3,4-thiadiazole based compounds as anticancer agents, Iran. J. Basic Med. Sci. 16 (11) (2013) 1133-1138.
  • [6] G. Young, W. Eyre, III.doxidation of benzalthiosemicarbazone, J.Chem. Soc. 79 (1901) 5460.
  • [7] M. Freund, C. Meinecke, Uber derivate des thiobiazolins, Chem. Ber. 29 (1896) 2511-2517.
  • [8] Praphulla Chandra Guha, Constitution of the so-called dithio-urazole of martin freund. ii. new methods of synthesis, isomerism and poly-derivatives, J. Am. Chem. Soc. 44 (7) (1922) 1510-1517.
  • [9] Guha, Roy-Choudhary, J. Indian Chem. Soc. 5 (1928) 149 [C.A., 23, 139 (1929)].
  • [10] Fuji, et al., J. Chem. Soc. Jpn. 74 (1954) 1056 [C.A., 49, 11592 (1955)].
  • [11] Richard W. Young, Kathryn H. Wood, The cyclization of 3-acyldithiocarbazate esters, J. Am. Chem. Soc. 77 (2) (1955) 400-403.
  • [12] C. Ainsworth, The condensation of aryl carboxylic acid hydrazides with orthoesters, J. Am. Chem. Soc. 77 (5) (1955) 1148-1150.
  • [13] Stolle, et al., J. Prakt. Chem. 69 (1904) 145, 366, 382, 474, 506.
  • [14] P.J. Guha, Rıng closure of hydrazodıthıo- and -Monothıo-Dıcarbonamıdes wıth acetıc anhydrıde, J. Am. Chem. Soc. 45 (1923) 1036.
  • [15] E. Oruç, S. Rollas, F. Kandemirli, N. Shvets, A. Dimoglo, The 1,3,4-thiadiazole derivatives synthesis, structure elucidation and structure-antituberculosis activity relationships investigation, J. Med. Chem. 47 (2004) 6760-6767.
  • [16] T.A. de Toledo, L.E. da Silva, A.M.R. Teixeira, P.T.C. Freire, P.S. Pizani, “Characterization of Meldrum’s acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations”, Journal of Molecular Structure, Volume 1091, 5 July 2015, Pages 37-42.
  • [17] Mahmut Gür, Nesrin Şener, Halit Muğlu, M. Serdar Çavuş, Osman Emre Özkan, Fatma Kandemirli, İzzet Şener, “New 1,3,4-thiadiazole compounds including pyrazine moiety: Synthesis, structural properties and antimicrobial features”, Journal of Molecular Structure, Volume 1139, 5 July 2017, Pages 111-118.
  • [18] R.K. Dani, M.K. Bharty, S.K. Kushawaha, S. Paswan, Om Prakash, Ranjan K. Singh, N.K. Singh, “Syntheses, spectral, X-ray and DFT studies of 5-benzyl-N-phenyl-1,3,4-thiadiazol-2-amine, 2-(5-phenyl-1,3,4-thiadiazol-2-yl) pyridine and 2-(5-methyl-1,3,4-thiadiazole-2-ylthio)-5-methyl-1,3,4-thiadiazole obtained by Mn(II) catalyzed reactions”, Journal of Molecular Structure, Volumes 1054–1055, 24 December 2013, Pages 251-261.
  • [19] R.K. Dani, M.K. Bharty, S.K. Kushawaha, Om Prakash, Ranjan K. Singh, N.K. Singh, “Ni(II), Cu(II) and Zn(II) complexes of (Z)-N′(1,3,4-thiadiazol-2-yl) acetimidate: Synthesis, spectral, solid state electrical conductivity, X-ray diffraction and DFT study”, Polyhedron, Volume 65, 28 November 2013, Pages 31-41.
  • [20]C. Meganathan, S. Sebastian, I. Sivanesan, Keun Woo Lee, Byoung Ryong Jeong, Halil Oturak, S. Sudha, N. Sundaraganesan, “Structural, vibrational (FT-IR and FT-Raman) and UV–Vis spectral analysis of 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea by DFT method”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 95, September 2012, Pages 331-340.
  • [21] Mahmut Gür, Halit Muğlu, M. Serdar Çavuş, Aytaç Güder, Hakan S. Sayıner, Fatma Kandemirli, “Synthesis, characterization, quantum chemical calculations and evaluation of antioxidant properties of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids” , Journal of Molecular Structure, Volume 1134, 15 April 2017, Pages 40-50.
  • [22] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864–B871.
  • [23] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects Phys. Rev., 140 (1965), pp. A1133–A1138.
  • [24] Silverstein RM and Webster FX. Spectroscopic Identification of Organic Compounds. Pages 82-181, Sixth Edition, John Wiley & Sons, 1996, New York, USA.
  • [25] Erdik, E.. Organik Kimyada Spektroskopik yöntemler, sayfa 95-138, 2. Baskı, Gazi Kitabevi, 1998, Ankara, Türkiye). [26] Gaussian 09, Revision B.01, Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A.; Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Keith T.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J., Gaussian, Inc., Wallingford CT, 2010.