THE DARK MATTER AND ENERGY IN THE DE SITTER WORLD

It is shown that dark matter and energy are cosmological quantum effects. De Sitter world is considered as a cosmological model. It is shown that in the de Sitter world, gravity and anti-gravity are different states of the Wigner elementary quantum system. It has been proven that in the Minkowski world, which is the limiting case of the de Sitter world, antigravity can be excluded. Moreover, it is shown that the Wigner - Inönü limit of the de Sitter model to the Minkowski world plays the role of Bohr's correspondence principle in quantum mechanics. A plan for further research is proposed.

___

  • [1] Ryabov VA, Tsarev VA, Tskhovrebov AM. The Search for Dark Matter Particles, Uspekhi Fizicheskikh Nauk 178 (11) 1129 – 1163 (2008) (in Russian).
  • [2] New Ideas in Dark Matter 2017, arXiv: 1707.0459v1 [hep-oh], 2017, p.113.
  • [3] Weinberg S. The Quantum Theory of Fields, vol.1-2, Cambridge University Press, 1995-1998.
  • [4] Weinberg S. Gravitation and Cosmology, John Wiley and Sons, Inc., New York–London–Sydney–Toronto, 1972
  • [5] Einstein A, Collected Works, vols. 1-4, ”Nauka”, Moscow, 1965-1967 (in Russian).
  • [6] Hawking S and Ellis G. The Large Scale Structure of Space-Time, Cambridge University Press, 1973
  • [7] Mustapha Ishak Testing General Relativity in Cosmology, arXiv:1806.10122v1 [astro-ph.CO] 26 Jun 2018.
  • [8] W.Pauli, Theory of Relativity, Pergamon Press, 1958.
  • [9] Wigner E. On Unitary Representations of the Inhomogeneous Lorentz Group, Nuclear Physics B (Proc.Suppl.), 6, (1989), 9-64; Ann. Math., 40, 149 (1939).
  • [10] Exact Solutions of the Einstein’s Field Equations, ed. by E.Schmutzer, Deutscher Verlag der Wissenschaften, Berlin, 1980.
  • [11] Groen O, Hervik S. Einstein's General Theory of Relativity (book draft, 2004), 538s.
  • [12] Galtsov DV, Particles and fields near black holes, Moscow University Press, 1986 (in Russian).
  • [13] Wigner, Inönü, Proc. Nat. Acad. Sci.(USA), 39, 510, 1953; 40, 119 (1954).
  • [14] Barut AO, Raczka R, Theory of Group Representations and Applications, Warsaw, 1977.
  • [15] Bohr N. Über die Anwendung Quantentheorie auf den Atombau. I. Grundpostulate der Quantentheorie, Zs.f.Phys., 1923, 13, 117-165.
  • [16] Bohr N, Selected Works, vols 1-2, Moscow, ”Nauka”, 1970-1971 (in Russian).
  • [17] Weinberg S. Lectures on Quantum Mechanics, Cambridge University Press, 2013.
  • [18] Messiah A, Quantum Mechanics, vols I-II, North Holland, John Wiley & Sons, 1966.
  • [19] Bargmann V. On Unitary Ray Representations of Continuous Groups - Ann. of Math., 1954, v.59, No.1, p.1-46.
  • [20] Gürsey F, Introduction to Group Theory, in ”Relativity, Groups and Topology”, eds. C. De-Witt, B. DeWitt, New York-London, 1964.
  • [20] Rajabov BA. Trans. Nat. Acad. Sci., Azerbaijan, Series of Phys.-Math. Sciences, 1983; No.6, pp.58-63; (in Russian).
  • [21] Rajabov BA. The Contraction of the Representations of the Group SO(4, 1) and Cosmological Interpretation, Astronomy & Astrophysics (Caucasus), 3, (2018), pp.74-90; arXiv:1801.10004, p.12.
  • [22] Monin AS, P.Ya. Poloubarinova-Kochina, V.I. Khlebnikov, Cosmology, Hydrodynamics, Turbulence - ”Nauka”, Moscow, 1989 (in Russian).
  • [23] General Relativity, ed. S.W. Hawking, W. Israel - Cambridge University Press, 1979.
  • [24] Bohr N. Rosenfeld L. Field and Charge Measurements in Quantum Electrodynamics, Phys.Rev., 1950, 78, 794-798.
  • [25] Senarath P. de Alwis, Francesco Muia, Veronica Pasquarella and Fernando Quevedo, Quantum Transitions Between Minkowski and de Sitter Spacetimes, arXiv:1909.01975v1 [hep-th] 4 Sep 2019.