Gördes Yöresi Klinoptilolitin (Doğal Ve Modifiye) Su Buharı Adsorpsiyonu

 Bu çalışmada Gördes klinoptiloliti (klinoptilolitçe zengin doğal tüf örneği) (CLN) ve bundan itibaren hazırlanan katyonik formlar (Li-, Na-, K-, Mg-, Ca-, ZH1- ve ZH2-CLN örnekleri), üzerinde zamana bağlı olarak, 30 ° C, 50 ° C ile 80 ° C sıcaklıklarındaki su tutma kapasiteleri incelenmiştir. Katyonik formlar 1 N LiCl (Li-CLN), 1 N NaCl (NaCLN), 1 N KCl (K-CLN), 1 N MgCl2 (Mg-CLN), CaCl2 (Ca-CLN), 1 N HCl (ZH1-CLN) ve 1 N H2SO4 (ZH2-CLN) çözeltileri kullanılarak hazırlanmıştır. Doğal ve modifiye örnekler, XRD ve BET yöntemleri ile karakterize edilmiştir. BET yöntemi ile numunelerin özgül yüzey alanları ve adsorpsiyon izotermleri bulunarak adsorpsiyon özellikleri saptanmıştır.  Klinoptilolit numunelerinin modifiye edilmesiyle su kapasitelerinin arttığı ve bunun yüzey alanıyla ilişkili olduğu belirlenmiştir. Klinoptilolitin H+ formlarının (ZH1- ve ZH2-CLN) en yüksek su adsorpsiyonu kapasitesine sahip olduğu, kapasitenin sırasıyla Ca, Li, Mg ve Na formlarında azalma gösterdiği ve K+ formunun ise en az su adsorpsiyonu kapasitesine sahip olduğu belirlenmiştir

Water Vapour Adsorptıon Of Clınoptılolıte (Natural And Modıfıed) From Gördes Regıon

In this study, The adsorption of water vapour capacities onto clinoptilolite (clinoptilolite-rich zeolitic tuff) obtained from Gördes region and its cationic forms (Li-, Na-, K-, Mg-, Ca-, ZH1- and ZH2-CLN samples) were investigated at the temperatures of 30°C, 50°C and 80°C. Cationic forms were prepared by using 1 N LiCl (Li-CLN), 1 N NaCl (Na-CLN), 1 N KCl (K-CLN), 1 N MgCl2 (Mg-CLN) , CaCl2 (CaCLN), 1 N HCl (ZH1-CLN) and 1 N H2SO4 (H2-CLN) solution. Natural and modified samples were characterised by XRD and BET methods. Sorption properties of samples were determined by using specific surface areas and adsorption isoterms obtained from BET method. An increase in water vapour capacity was determined when clinoptilolite samples were modified and it was also determined that this result was related with the surface area. Finally, it was found that, H+ forms of clinoptilolite (ZH1- ve ZH2-CLN) had the highest water vapour adsorption capacity while its K+ form had the lowest one. In addition, It was determined that the water adsorption capacity decreased Ca, Li, Mg and Na forms, respectively. With its mentioned properties, natural zeolites are a suitable choice for gas drying applications in today’s industry. 

___

  • [1] A. Dyer, “An Introduction to Zeolite Molecular Sieves”, John Willey and Sons Pres, 1988.
  • [2] D.W. Breck, “Zeolites: Moleculer Sieves”, Wiley-Interscience, New York, 1974.
  • [3] D.W. Breck, “Zeolites: Moleculer Sieves”,John Wiley and Sons Inc., New York, pp 711, 1980.
  • [4] W.M. Meier, “Zeolite Structures”, Molecular Sieves, Soc. Chem. Inc., London, pp. 10-27, 1968.
  • [5] T. Armbruster ve M.E. Gunter, , “Crystal structures of natural zeoltes, Natural Zeolites: Occurrence, Properties, Applications” (Ed: D.L. Bish, ve D.W. Ming,), Mineralogical Society of America Reviews in Mineralogy and Geochemistry, Vol.45, pp.1-57, 2001.
  • [6] M.W. Ackley, R.F. Gıese ve R.T. Yang, “Clinoptilolite: Untapped potential for kinetic gas separations”, Zeolites, Vol.12, pp.780-788, 1992.
  • [7] F. Çakıcıoğlu-Ozkan, ve S. Ülkü, “The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite”, Microporous and Mesoporous Materials, Vol. 77, No.1, pp. 47-53, 2005.
  • [8] D.M. Rutven, “Zeolites as selective adsorbents”, Chemical Engineering Progress, Vol. 42, pp.42-50, 1988.
  • [9] D. L. Bısh, “Effects of composition on the dehydration behavior of clinoptilolite and heulandite”, Occurrence, Properties and Utilization of
  • Natural Zeolites (Ed: KALLO, H. S. and SHERRY, H. S.), Akademiai Kiado, Budapest, pp.565-576, 1988.
  • [10] R. Roque-Malherbe, , L. Lemes-Fernandez, , L. Lopez-Colado, , C. De Las Pozas, ve A. Montes-Carballal, “Physicochemical properties of natural zeolites used for adsorption of water”, Natural Zeolites’93 (Ed: D.W. Ming, and F.A. Mumpton), Brockport, New York, pp.299-308, 1995.
  • 11] D.A. Whıte, ve R.L. Bussey, “Water sorption properties of modified clinoptilolite”, Seperation Purification Technology, Vol. 11, pp.137-141, 1997.
  • [12] G. Gottordi ve E. Galli, “Natural Zeolites” Mineral and Rock, Springer Verlag, Berlin, 1985.
  • [13] D.E.W. Vaughan, “Properties of Natural Zeolites: Natural Zeolite Occurrence, Properties, Uses” (Ed: L. B. Sand, and F. A. Mumpton), Pergamon Press, New York, pp. 353-372, 1978.
  • [14] D.L. Bısh, “Thermal behavior of natural zeolites”, Natural Zeolites’93 (Ed: D.W. Ming, and F.A. Mumpton,), Brockport, New York, pp.259270, 1995.
  • [15] J.R. Boles, “Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites”, American Mineralogist, Vol. 57, pp. 1463-1493, 1972.
  • [16] A.B. Merkle ve M. Slaughter, “Determination and refinement of the structure of heulandite”, American Mineralogist, Vol: 53, pp. 1120-1138, 1968.
  • [17] J.W. Carey ve D.L. Bısh, “Calorimetric measurement of the enthalpy of hydration of clinoptilolite”, Clays and Clay Minerals, Vol. 45, No. 6, pp. 826-833, 1997.
  • [18] D.L. Bısh ve J.W. Carey, “Thermal behavior of natural zeolites, Natural Zeolites: Occurrence, Properties, Applications” (Ed: D.L. Bish, and D.W.Ming), Mineral. Soc. Am. Rev. Mineral. Geochem., Vol. 45, pp.403452, 2001.