Fonksiyonel SEBS Nanofiberlerinin Elektro Çekim İle Üretim Ve Analizi

Termoplastik elastomerler (TPE), hızlı prototipleme sayesinde, araştırmacılara yumuşak ve jöle benzeri yapılardan sert ve rijit malzemelere kadar geniş bir tasarım imkânı sağlayabilmekapasitesine sahiptir. Bu bağlamda, poli(stiren-b-(etilen-kobütilen)-b-stiren) (SEBS) triblok kopolimerleri birçok farklı olumlu özelliklere sahiptir ve farklı uygulamalar için cihazların tasarımı ve gereksinimleri düşünüldüğünde çok umut vericidir. SEBS triblock kopolimerinin termoplastik ve elastomerik özelliklerinin kombinasyonu büyük ölçekli malzemelerin üretiminde potansiyel malzemeden biridir. Bu çalışmada, elektro çekimin yararlarından faydalınarak SEBS triblock kopolimerden ortalama çapları 286±93 nm olan yüksek elastik ve fonksiyonel nanofiberler bildiğimiz kadarıyla literatüre göre ilk defa üretilmiştir. Elde edilen bu fonksiyonel elektrospan nanofiberlerinin yakın gelecekte tıbbi ve su arıtımı uygulamalarında yaygın olarak kullanılacağına inanıyoruz.

PRODUCTION AND ANALYSIS OF FUNCTIONAL SEBS NANOFIBERS BY ELECTROSPINNING

Thermoplastic elastomers (TPE) offers wide design opportunities because of its rapid prototyping that provides researchers with the acquisition of many different material properties from softness and jelly-like properties to hardness and rigidity. In this regard, poly(styrene-b-(ethylene-cobutylene)-b-styrene) (SEBS) triblock copolymer has many positive aspects and is very promising when the design and requirements of devices for different applications are considered. The combination of thermoplastic and elastomeric properties of SEBS triblock copolymer makes it one of the potential materials in the production of large-scale materials. In this study, highly elastic and functional nanofibers from SEBS triblock copolymer with the diameters of 286±93 nm were produced successfully by electrospinning for the first time, to the best of our knowledge. We believe that SEBS-based functional electrospun nanofibers will find widespread applications in medicine and water purification in the near future

___

  • Cadafalch Gazquez, G., Smulders, V., Veldhuis, S. A., Wieringa, P., Moroni, L., Boukamp, B. A., & ten Elshof, J. E. (2017). Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials, 7(1), 16.
  • Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272.
  • Ismail, S. M. R. S., Chatterjee, T., & Naskar, K. (2017). Superior heat‐resistant and oil‐resistant blends based on dynamically vulcanized hydrogenated acrylonitrile butadiene rubber and polyamide 12. Polymers for Advanced Technologies, 28(6), 665-678.
  • Latko, P., Bielecki, M., Kozera, R., & Boczkowska, A. (2017). Relationship between processing and electrical properties in SEBS/CNT nanocomposites. Journal of Elastomers & Plastics, 49(4), 356-367.
  • Li, X., Tang, S., Zhou, X., Gu, S., Huang, K., Xu, J., ... & Li, Y. (2017). Synergistic effect of amino silane functional montmorillonite on intumescent flame‐retarded SEBS and its mechanism. Journal of Applied Polymer Science, 134(24).44953(1-11)
  • Li, X., Luan, S., Shi, H., Yang, H., Song, L., Jin, J., ... & Stagnaro, P. (2013). Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 102, 210-217.
  • Rungswang, W., Kotaki, M., Shimojima, T., Kimura, G., Sakurai, S., & Chirachanchai, S. (2011). Existence of microdomain orientation in thermoplastic elastomer through a case study of SEBS electrospun fibers. Polymer, 52(3), 844-853.
  • Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557-569.
  • Shi, Q., Xu, X., Fan, Q., Hou, J., Ye, W., & Yin, J. (2015). Construction of d-α-tocopheryl polyethylene glycol succinate/PEO core–shell nanofibers on a blood-contacting surface to reduce the hemolysis of preserved erythrocytes. Journal of Materials Chemistry B, 3(10), 2119-2126.
  • Shi, Q., Fan, Q., Ye, W., Hou, J., Wong, S. C., Xu, X., & Yin, J. (2015). Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte. Colloids and Surfaces B: Biointerfaces, 125, 28-33.
  • White, C. C., Tan, K. T., Hunston, D. L., Nguyen, T., Benatti, D. J., Stanley, D., & Chin, J. W. (2011). Laboratory accelerated and natural weathering of styrene–ethylene–butylene–styrene (SEBS) block copolymer. Polymer degradation and stability, 96(6), 1104-1110.
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403-4412.
  • Zhou, T., Wu, Z., Li, Y., Luo, J., Chen, Z., Xia, J. & Zhang, A. (2010). Order–order, lattice disordering, and order–disorder transition in SEBS studied by two-dimensional correlation infrared spectroscopy. Polymer, 51(18), 4249-4258.
  • Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. C., & Ma, Z. An introduction to electrospinning and nanofibers. (2005). Singapura: World Scientific Publishing Company.
  • Kozanoğlu, G. S. (2015). Elektrospinning yöntemiyle nanolif üretim teknolojisi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Swatloski, R. P., Barber, P. S., Opichka, T., Bonner, J. R., Gurau, G., Griggs, C. S., & Rogers, R. D. (2013). U.S. Patent Application No. 13/949,501.