Alkalilerle Aktive Edilen Taban Küllü Hafif Harç Üretimi

Çalışmada Termik Santral taban külünün (TK) alkalilerle aktive edilerek hafif harç üretiminde kullanılması amaçlanmıştır. Bu amaçla öğütülmüş TK sodyum hidroksit (SH) ve sodyum silikat (SS) alkali çözeltileri kullanılarak 4x4x16 cm boyutlarında çimentosuz harç karışımları üretilmiştir. Numunelere 20 saat 75 oC’de etüvde veya laboratuvarda 20 oC’de havada kür olmak üzere iki farklı kür uygulanmıştır. 1, 7 ve 28. günlerde numunelerin birim ağırlık, ultrases geçiş hızı ve basınç dayanımları belirlenmiştir. En uygun numunenin birim ağırlığı 1,59 kg/dm3 ve basınç dayanımı 18,51 MPa, 80 donma-çözülme çevrimi sonucu dayanım kaybı % 11,5 olarak bulunmuş ve numune 400 °C’ye kadar termal stabilitesini korumuştur.

Production Of Alkali Activated Lightweight Bottom Ash Mortar

In this study it is attempted to use alkali activated thermal power plant bottom ash (BA) in the production of lightweight mortar. Cement-free 4x4x16 cm mortar specimens were produced using grinded BA, alkali mixtures of sodium hydroxide (SH) and sodium silicate (SS). Two different curing types of 20 h curing at 75 ºC oven and then air curing at 20 oC air or air curing at 20 oC were carried on the specimens. Unit weight, ultrasound pulse velocity and compressive strengths of the specimens were determined on 1, 7 and 28. days. Average values of the unit weight and compressive strength for the best specimen were 1,59 kg/dm3 and 18,51 MPa respectively. The compressive strength loss of the specimen was only 11,5% after 80 freeze-thaw cycles, and the specimen possessed superior thermal stability up to 400 °C.

___

  • [1] C. Jaturapitakkul and R. Cheerarot, “Development of bottom ash as pozzolanic material”, Journal of Materials in Civil Engineering, Vol. 15, pp. 48-53, 2003.
  • [2] P. Chindaprasirta, C. Jaturapitakkul, W. Chaleec and U. Rattanasak, “Comparative study on the characteristics of fly ash and bottom ash geopolymers”, Waste Management, Vol. 29, pp. 539-543, 2009.
  • [3] Fernandez-Jimenez and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: effect of the activator”, Cement and Concrete Research, Vol. 35, 1984-1992, 2005.
  • [4] J. Davidovits, “30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs” Geopolymer 2002 Conference, October 2002, Melbourne, Australia, Proceedings, pp. 28-29.
  • [5] B.V. Rangan, “Fly Ash-Based Geopolymer Concrete”, Research Report, No. 4, Engineering Faculty, Curtin University of Tech., Perth, Australia, 44 s. 2008.
  • [6] Z. Li, Z. Ding and Y. Zhang, “Development of Sustainable Cementious Materials” International Workshop on Sustainable Development and Concrete Technology, 2004, Bejing, China, pp. 55-76.
  • [7] J.G.S. Jaarsveld, J.S.J. Deventer, “Effect of the alkali metal activator on the properties of fly ash based geopolymers” Indian Engineering of Chemistry Research, Vol. 38, No.10 , pp. 3932-3941,1999.
  • [8] X. Zhaohui and X. Yunping, “Hardening mechanisms of an alkaline activated class F fly ash”, Cement and Concrete Research, Vol. 31, pp. 1245-1249, 2001.
  • [9] R. Cioffi, L. Maffucci and L. Santoro, “Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue”, Resources Conservation and Recycling, Vol. 40, pp. 27-38, 2003.
  • [10] İ.B. Topçu ve M. Canbaz, “Alkali aktive edilmiş yüksek fırın cüruflu harçlarda donmaçözülme” ESOGÜ Müh-Mim Fak. Dergisi, Cilt 21, No. 2, ss. 1-16, 2008.
  • [11] İ.B. Topçu ve U. Toprak, “Alkalilerle Aktive Edilen Uçucu Külle Hafif Tuğla Üretilmesi”, 4. Ulusal Yapı Malzemesi Kongresi ve Sergisi, 12-14 Kasım 2008, İstanbul, Türkiye, ss. 38-45.
  • [12] T. Bakharev, “Geopolymeric materials prepared using class F fly ash and elevated temperature curing”, Cem. and Conc. Research, Vol. 36, pp.1134-1147, 2006.
  • [13] K. Komnitas and D. Zaharaki, “Geopolymerization: a review and prospects for the minerals industry”, Mineral Engineering, Vol. 20, pp. 1261-1277, 2007.
  • [14] A. Jonker, “Insulating Refractory Materials From Inorganic Waste Resources”, Doctor Technologiae, Department of Chemistry, Faculty of Science, Tshwane University of Technology, Tshwane, South Africa, 103 p., 2006.
  • [15] D.L.Y. Kong and J. G. Sanjayan, “Damage behavior of geopolymer composites exposed to elevated temperatures”, Cement and Concrete Composites, Vol. 30, No. 10, pp. 986-991, 2008.