Zinc(II) and Cadmium(II) Salphen Catalyzed Alkylation Reactions to Form α-Alkylated Ketones

Zinc(II) and Cadmium(II) Salphen Catalyzed Alkylation Reactions to Form α-Alkylated Ketones

The zinc (II) and cadmium (II)-salphen catalyzed α-alkylation of ketones with primary alcohols is reported. Various α-alkylated ketones were obtained in good yields through a borrowing hydrogen strategy by using 1 % of catalysts and a catalytic amount of NaOH (10 mol%) as the base under air atmosphere. All synthesized compounds were characteized by 1H and 13C NMR.

___

  • [1] (a) Narges, K., Abdolreza, R., Maasoumeh J. (2020). Silica Iminopyridine-Functionalized Nanomaghemite Enhances the Oxygenation Activity and Durability of Simple Co (II) Salophen Complex. Appl. Organomet. Chem., 34, e5535. (b) Hongyue, L., Dandan, X., Yan, N., Chao, W., Fengrong, X., Lei, L., Ping, X. (2019). Design, Synthesis and Biological Evaluation of Cobalt (II)-Schiff Base Complexes As ATP-Noncompetitive MEK1 Inhibitors. J. Inorg. Biochem., 195, 174-181.
  • [2] Asraf, M. A., Ezugwu, C. I., Zakaria, C. M., Verpoort, F. (2019). Homogeneous Photochemical Water Oxidation with Metal Salophen Complexes in Neutral Media. Photochem. Photobiol. Sci., 18, 2782-2791.
  • [3] Mehta, J. P., Parmar, D. K., Godhani, D. R., Nakum, H. D., Desai, N. C. (2016) Heterogeneous Catalysts Hold the Edge Over Homogeneous Systems: Zeolite-Y Encapsulated Complexes for Baeyer-Villiger Oxidation of Cyclohexanone. J. Mol. Catal. A-Chem., 421, 178-188.
  • [4] (a) Yankin, A. N., Lukyanov, D. A., Beletskii, E. V., Bakulina, O. Y., Vlasov, P. S., Levin, O. V. (2019). Aryl‐Aryl Coupling of Salicylic Aldehydes through Oxidative CH‐activation in Nickel Salen Derivatives. ChemistrySelect, 4, 8886-8890. (b) Choudhary, A., Das, B., Ray, S. (2016). Enhanced Catalytic Activity and Magnetization of Encapsulated Nickel Schiff-Base Complexes in Zeolite-Y: A Correlation with The Adopted Non-Planar Geometry. Dalton Trans., 45, 18967-18976.
  • [5] Toniolo, D., Scopelliti, R., Zivkovic, I., Mazzanti, M. (2020). Assembly of High-Spin [Fe3] Clusters by Ligand-Based Multielectron Reduction. ‎J. Am. Chem. Soc., 142, 7301-7305.
  • [6] (a) Ganesan, V., Yoon, S. (2020). Direct Heterogenization of Salphen Coordination Complexes to Porous Organic Polymers: Catalysts for Ring-Expansion Carbonylation of Epoxides. Inorg. Chem., 59, 2881-2889. (b) Elsebach, M., Sierda, E., Goedecke, J. J., Bignardi, L., Hermanowicz, M., Rohde, M., Wiesendanger, R., Bazarnik, M. (2020). In Situ Synthesis of Metal-Salophene Complexes on Intercalated Graphene. J. Phys. Chem. C., 124, 4279-4287.
  • [7] Yoon, T. P., Jacobsen, E. N. (2003). Privileged Chiral Catalysts, Science, 299, 1691-1693.
  • [8] (a) Kavukcu, S. B., Günnaz, S., Şahin, O., Türkmen, H. (2019). Piano‐Stool Ru (II) Arene Complexes That Contain Ethylenediamine and Application in Alpha‐Alkylation Reaction of Ketones with Alcohols. Appl. Organometal. Chem., 33, e4888. (b) Chakrabarti, K., Maji, M., Panja, D., Paul, B., Shee, S., Das, G. K., Kundu, S. (2017). Utilization of MeOH as a C1 Building Block in Tandem Three-Component Coupling Reaction. Org. Lett., 19, 4750-4753.
  • [9] Wang, R., Huang, L., Du, Z., Feng, H. (2017). RhCl(CO)(PPh3)2 Catalyzed α-alkylation of Ketones with Alcohols. J. Organomet. Chem., 846, 40−43
  • [10] (a) Genç, S., Günnaz, S., Çetinkaya, B., Gülcemal, S., Gülcemal, D. (2018). Iridium(I)-Catalyzed Alkylation Reactions to Form α-Alkylated Ketones. J. Org. Chem., 83, 2875-2881. (b) Genç, S., Arslan, B., Gülcemal, S., Günnaz, S., Çetinkaya, B., Gülcemal, D. (2019). Iridium(I)-Catalyzed C−C and C−N Bond Formation Reactions via the Borrowing Hydrogen Strategy. J. Org. Chem., 84, 6286-6297.
  • [11] Yang, Y., Qin, A., Zhao, K., Wang D., Shi, X. (2016). Design and Synthesis of Alanine Triazole Ligands and Application in Promotion of Hydration, Allene Synthesis and Borrowing Hydrogen Reactions. Adv. Synth. Catal., 358, 1433-1439.
  • [12] Alanthadka, A., Bera, S., Banerjee, D. (2019). Iron-Catalyzed Ligand Free α-Alkylation of Methylene Ketones and β-Alkylation of Secondary Alcohols Using Primary Alcohols. J. Org. Chem., 84, 11676-11686.
  • [13] Peña-López, M., Piehl, P., Elangovan, S., Neumann, H., Beller, M. (2016). Manganese-Catalyzed Hydrogen-Autotransfer C-C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. Angew. Chem., Int. Ed., 55, 14967-14971.
  • [14] Zhang, G., Yin, Z., Zheng, S. (2016). Cobalt-Catalyzed N-Alkylation of Amines with Alcohols. Org. Lett., 18, 300-303.
  • [15] (a) Bains, A. K., Kundu, A., Yadav, S., Adhikari, D. (2019). Borrowing Hydrogen-Mediated N‑Alkylation Reactions by a Well-Defined Homogeneous Nickel Catalyst. ACS Catal., 9, 9051-9059.
  • [16] (a) Pagadala, R., Ali, P., Meshram, J. S. (2009). Microwave Assisted Synthesis and Characterization of N,N′-Bis(salicylaldehydo)ethylenediamine Complexes of Mn(II), Co(II), Ni(II), and Zn(II). J. Coord. Chem., 62, 4009−4017. (b) Hille, A., Ott, I., Kitanovic, A., Kitanovic, I., Alborzinia, H., Lederer, E., Wölf, S., Metzler-Nolte, N., Schäfer, S., Sheldrick, W. S., Bischof, C., Schatzschneider, U., Gust, R. (2009) [N,N′-Bis(salicylidene)-1,2-phenylenediamine]metal Complexes with Cell Death Promoting Properties. J. Biol. Inorg. Chem., 14, 711−725. (c) Chong, J. H., Ardakani, S. J., Smith, K. J., MacLachlan, M. J. (2009). Triptycene-Based Metal Salphens-Exploiting Intrinsic Molecular Porosity for Gas Storage. Chem.-Eur. J., 15, 11824−11828.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü