Yüksek Frekans Anahtarlamalı Faz Kontrollü DC-AC İnvertör

Teknoloji ve malzeme bilimindeki gelişmelere paralel olarak artan güç-boyut oranı ile özellikle ağırlığın önemli olduğu ulaşım araçları ve cihaz teknolojilerinde küçük boyutlu kesintisiz güç kaynağı ve yüksek frekans transformatörlerine olan talep artış göstermektedir. Bu çalışmada, yüksek frekans anahtarlamalı faz kontrollü DC-AC invertörler ve yüksek frekans transformatörleri incelenmiştir. Devredeki, transformatörünün primer ve sekonderinde birer çift anahtar bulunur. Gerilim transfer oranı, iki çift anahtar arasındaki faz farkı ile kontrol edilir. Anahtarlama frekansı yükseltilerek transformatör küçültülmüştür. Böylece sistemin hacmi ve ağırlığı azaltılmıştır. Benzer çalışmalardaki akım ve gerilim sıçramaları daha hızlı elamanlar ve opto-coupler kullanılarak azaltılmış, snubber devreleri kullanılarak bu sıçramalar minimuma çekilmiştir. Bu yapıdaki DC-AC invertörler ve yüksek frekans transformatörleri özellikle küçük boyutlu kesintisiz güç kaynağı yapımı için uygundur. Uygulamada gerçekleştirilen devre 110 W’lık bir DC-AC dönüştürücü olup çıkış gerilimi 220 V, verimi %93’dür. Uygulama devresinde kullanılan yüksek frekans transformatörü, sac levha çekirdekli transformatöre göre fiziksel boyutu 1/7, ağırlığı 1/10’dur. Devrenin güç kaynağı, sürüş devreleri, anahtarlar, fanlar ve filtreler dikkate alındığında, fiziksel boyutu 1/5, ağırlığı 2/3 oranında azaltılmıştır.

High Frequency Switched Phase Controlled DC-AC Inverter

With the increased power to weight ratio, corresponding to the developments in technology and material science, the demand for small uninterruptible power supply and high frequency transformers in transport vehicles and device technologies where the weight is particularly important has increased. An analysis of the high frequency switched phase-controlled DC-AC inverter and the high frequency transformer is presented. This inverter has a pair of switches in each side of the primary and the secondary of the transformer. The voltage conversion ratio is controlled by the phase difference between the two pairs of switches. The transformer is miniaturized by increasing the switching frequency. Thus the volume and weight of the system have been reduced. Current and voltage jumps in similar studies were reduced by using faster elements and opto-coupler, and these jumps were minimized by using snubber circuits. This DC-AC inverter and the high frequency transformers is especially suitable for small uninterruptible power supply systems. The circuit performed in the application is a 110 W DC-AC converter, the output voltage is 220 V, the efficiency is 93%. The high frequency transformer used in the application circuit has a physical size of 1/7 and a weight of 1/10 according to the sheet metal core transformer. When the circuit's power supply, driving circuits, switches, fans and filters were taken into consideration, its physical size was reduced by 1/5 and its weight by 2/3.

___

  • Abdullah, M. F., Iqbal, S. and Masri, S. 2012. “A Novel Single Phase DC-AC Inverter”. IEEE Student Conference on Research and Development. Electronic ISBN: 978-1-4673-5160-7.
  • Alkul, O. ve Demirbaş, Ş. 2019. “Güç Elektroniği Transformatörlerinin İncelenmesi ve Bir DA/DA Dönüştürücü Uygulaması”. Gazi Üniversitesi, Fen Bilimleri Dergisi. Part C, 7(2): 450-471.
  • Anonim. 2016. http://www.upsdunyasi.com/ups-nedir.html Erişim tarihi: 08.10.2016
  • Anonim. 2016. Static or Rotary UPS:Which is Best for Your Application? https://blog.se.com/power-management-metering-monitoring-power-quality. Erişim tarihi: 08.10.2016
  • Bodur, H. 2010. Güç Elektroniği. Birsen Yayınevi (2017), ISBN-10: 9755115463
  • Cacciato, M., Consoli, A., Attanasio, R. and Gennaro, F. 2010. “Soft-switching converter with HF transformer for grid-connected photovoltaic systems”. IEEE Transactions on Industrial Electronics, 57(5), 1678-1686.
  • Castilla, M., Vicuña, L.G., Matas, J., Miret, J. and Vasquez, J.C. 2009. “A comparative study of sliding-mode control schemes for quantum series resonant inverters”. IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3487–3495.
  • Chung, Y.H., Shin, B.S. and Cho, G.H. 1991. Bilateral series resonant inverter for high frequency link UPS.
  • Deng, S., Mao, H., Mazumdar J., Batarseh I. and Islam, K.K. 2003. “A new control scheme for high-frequency link inverter design”. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition. 0-7803-7768-0/03/2003 IEEE 512.
  • Elmas, B. 2006. Yüksek frekans anahtarlamalı faz kontrollü DC-AC invertör. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Ferroxcube Databook. 2019. Soft Ferrites and Accessories, www.ferroxcube.com. Erişim tarihi: 10.09.2019.
  • Gümüşkaya, H. 2007. Mikroişlemciler ve 8051 Ailesi. Alfa Yayınları (2007), ISBN: 9753160860
  • Harada, K., Anan, F., Yamasaki, K., Jinno, M., Kawata, Y., Nakashima, T., Murata, K. and Sakamato, H. 1996. Intelligent Transformer, IEEE 0-7803-3500-7/96.
  • Harada, K., Sakamoto, H. and Shoyama, M. 1988. “Phase-Controlled DC-AC Converter with High-Frequency Switching”. IEEE Transactions on Power Electronics. Vol. 3. No. 4.
  • Inoue, S. and Akagi, H. 2007. “A bidirectional dc/dc converter for an energy storage system with galvanic isolation”. IEEE Trans. Power Electron. vol. 22, no. 6, pp. 2299–2306.
  • Itoh, J., Oshima, R. and Takahashi, H. 2014. “Experimental Verification of High Frequency Link DC-AC Converter using Pulse Density Modulation at Secondary Matrix Converter”. IEEE International Power Electronics Conference. Electronic ISBN: 978-1-4799-2705-0.
  • Jung, Y., Yu, G., Choi, J. and Choi, J. 2002. “High-frequency DC link inverter for grid-connected photovoltaic system”. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 1410-1413.
  • Kjær, S.B. 2005. Design and control of an inverter for photovoltaic applications. Institute of Energy Technology, Aalborg University.
  • Kjaer, S.B. and Blaabjerg, F. 2003. “Design optimization of a single phase inverter for photovoltaic applications”. In IEEE 34th Annual Conference on Power Electronics Specialist. PESC'03. Vol. 3, 1183-1190.
  • Lohner, A., Meyer T. and Nagel A. 1996. “A new panel-integratable inverter concept for grid-connected photovoltaic systems”. IEEE proc. of the 1996 international symposium on industrial electronics (ISIE’96). Vol. 2, 827-831.
  • Lotfi, A.W. and Wilkowski, M.A. 2001. “Issues and advances in high-frequency magnetics for switching power supplies”. Proceedings of the IEEE 89.6, 833-845.
  • Magnetics Databook. 2004. Magnetics Catalog, www.mag-inc.com. Erişim tarihi: 10.09.2019.
  • Martins, D.C. and Demonti, R. 2002. “Grid connected PV system using two energy processing stages”. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference. 1649-1652.
  • Martins, D.C. and Demonti, R. 2001. “Photovoltaic energy processing for utility connected system”. In IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society. Cat. No. 37243. Vol. 3.
  • Mazumder, S.K. and Rathore, A.K. 2011. “Primary-Side-Converter-Assisted Soft-Switching Scheme for an AC/AC Converter in a Cycloconverter-Type High-Frequency-Link Inverter”. IEEE Transactions on Industrial Electronics. Volume: 58, Issue: 9.
  • Mcmurray, W. 1970. Power converter circuits having a high frequency link U.S. Patent 3 517 300.
  • Mekhilef, S., Rahim, N.A., and Omar, A.M. 2000. “A new solar energy conversion scheme implemented using grid-tied single phase inverter”. In 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium. Vol. 3, 524-527.
  • Middlebrook, R.D. and Cuk, S. 1976. “A general unified approach to modeling switching converter power stages”. IEEE Power Electronics Specialists Conf. Rec., pp. 18-34.
  • Min, B.D., Lee, J.P., Kim, J.H., Kim, T.J., Yoo, D.W. and Song, E.H. 2009. “A new topology with high efficiency throughout all load range for photovoltaic PCS”. IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4427–4435.
  • Muroyama, S., Aoki, T. and Yotsumoto, K. 1989. “A control method for a high-frequency link inverter using cycloconverter techniques”. Telecommunications Energy Conference, INTELEC '89, Conference Proceedings, Eleventh International., pp. 191-196, vol. 2.
  • Nagao, M. and Harada, K. 1997. “Power flow of photovoltaic system using buck-boost PWM power inverter”. In Proceedings of Second International Conference on Power Electronics and Drive Systems, Vol. 1, 144-149.
  • Papanikolaou, N.P., Tatakis, E.C., Critsis, A. and Klimis, D. 2003. Simplified high frequency converter in decentralized grid-connected PV systems: a novel low-cost solution. In proc. EPE'03.
  • Siemens Databook. 2019. Ferrites and Accessories, www.epcos.com. Erişim tarihi: 10.09.2019.
  • Swaminathan, N. and Lakshminarasamma, N. 2018. High Gain, High Frequency Link DC-AC Converter with Hybrid SPWM Scheme, 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Electronic ISBN: 978-1-5386-9316-2.
  • TDK Databook. 2019. Ferrites for SMPS, www.tdk.com. Erişim tarihi: 10.09.2019.
  • Topaloğlu, N. ve Görgünoğlu, S. 2003. Mikroişlemciler ve Mikrodenetleyiciler. Seçkin Yayıncılık.
  • Yamato, I., Tokunaga, N., Matsuda, Y., Amano, H. and Suzuki, Y. 1988. “New conversion system for UPS using high-frequency link”. Power Electronics Specialists Conference, PESC '88 Record, 19th Annual IEEE, pp. 658 -663 vol. 2.
  • Zhao, B., Song, Q., Liu, W. and Sun, Y. 2014. “Overview of dual-activebridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system”. IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091–4106.
  • Zhu, W., Zhou, K. and Cheng, M. 2014. “A Bidirectional High-Frequency-Link Single-phase Inverter: Modulation, Modeling, and Control”. IEEE Transactions on Power Electronics. Volume: 29, Issue: 8.