TiAlCN Kaplı Piston Segmanının Tribolojik Özelliklerinin İncelenmesi

İçten yanmalı motorlarda (ICE) temas halinde çalışan parçaların sürtünmesi hem motorun ömrünü hem de yakıt tüketimini etkiler. Piston segmanları bir ICE de sürtünme kayıplarının önemli bir kısmına neden olmaktadır. Bu kayıpları azaltmak için en etkili yöntem yüzey kaplama işlemidir. PVD tekniği hem çevre için sorun oluşturmaması hem de karmaşık geometrik parçaların kaplanmasına olanak sağlaması nedeniyle dikkat çekmektedir. Bu makalede, katodik ark PVD tekniği ile dökme demir piston segmanı yüzeyine kaplanan TiAlCN seramik kaplama ve kaplanmamış piston segmanının tribolojik ve mekanik özellikleri (mikrosertlik) incelenmiştir. Kaplamalı ve kaplamasız numunelerin yapısal özellikleri SEM, EDX ve XRD yöntemleri ile incelenmiştir. Tribolojik test sonucunda kaplamasız ve TiAlCN kaplamanın kuru koşullar altındaki ortalama sürtünme katsayıları sırasıyla 0.76 ve 0.21 olarak belirlenmiştir. Resiprocating kayma testi sonucu, TiAlCN kaplamanın aşınma oranı kaplanmamış segmana kıyasla yaklaşık %97 oranında azaltılmıştır. Sonuçlar, TiAlCN kaplamanın iyi tribolojik özellikler sergilediğini göstermiştir. Ayrıca, numunelerin aşınmış yüzeyinden alınan SEM görüntüsü ve EDX analizine bağlı olarak aşınma mekanizmaları incelenmiştir.
Anahtar Kelimeler:

PVD, Piston Ring, Wear, Sekman

Investigation of Tribological Properties of TiAlCN Coated Piston Ring

In internal combustion engines (ICE), the friction of parts working in contact affects both engine life and fuel consumption. Piston rings cause a significant portion of friction losses in an ICE. Today, different surface coatings are made to reduce these effects. The Physical Vapor Deposition (PVD) method has attracted the most attention because it is environmentally friendly and homogeneous coatings can be obtained. In this study, the tribological and mechanical properties (microhardness) of TiAlCN ceramic coating and uncoated piston ring applied to piston rings made of cast iron by CAPVD method are reported. The wear morphologies, chemical composition and phases on the coating surface were analyzed by SEM, EDX and XRD techniques. As a result of the tribological test, the average friction coefficients of the uncoated and TiAlCN coating under dry conditions were determined as 0.76 and 0.21, respectively. As a result of the reciprocating slip test, the wear rate of the TiAlCN coating was reduced by approximately 97% compared to the uncoated ring. The results showed that the TiAlCN coating exhibited good tribological properties. Besides, wear mechanisms were examined based on the SEM image and EDX analysis taken from the worn surface of the samples.

___

  • Alışır, S., and Evrensel, D. 2021. “Investigation into coating structure and wear environment effects on tribological properties of piston ring coated with monolayer TiAlN and multilayer TiN/ TiAlN”. Journal of Materials Engineering and Performance, 1-13.
  • Ananthakumar, R., Subramanian, B., Kobayashi, A., & Jayachandran, M. 2012.“Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings”. Ceramics International, 38(1), 477-485.
  • Banerji, A., Bhowmick, S., & Alpas, A. T. 2014. “High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys”, Surface and Coatings Technology, 241, 93-104.
  • Bozyazı, E., Ürgen M., and Çakır A. F. 2004. “Comparison of reciprocating wear behaviour of electrolytic hard chrome and arc-PVD CrN coatings”, Wear, 256, 832–839.
  • Bull, S.J., Bhat, D.G., and Staia M.H. 2003. “Properties and performance of commercial TiCN coatings. part 1: coating architecture and hardness modelling”, Surface and Coatings Technology, 163 – 164, 499–506.
  • Cho, D.H. and Lee, Y.Z. 2009. “Evaluation of ring surfaces with several coatings for friction, wear and scuffing life”,Transactions of Nonferrous Metals Society of China, 19(4), 992- 996.
  • Cho, C. W., and Lee, Y. Z. 2003. “Effects of oxide layer on the friction characteristics between TiN coated ball and steel disk in dry sliding”. Wear, 254(3-4), 383-390.
  • Chu, S., and Majumdar, A. 2012. “Opportunities and challenges for a sustainable energy future”, Nature, 488, 294- 303.
  • Çomaklı, O. 2021. “Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films”. Ceramics International, 47(3), 4149-4156.
  • Dejun, K., and Haoyuan, G. 2015. “Friction wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures”. Tribology international, 88, 31-39.
  • Dolatabadi, N., Forder, M., Morris, N., Rahmani, R., Rahnejat, H., and Howell Smith, S. 2020. “Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction”, Applied Energy, 259, 114129.
  • Friedrich, C., Berg, G., Broszeit, E., Rick, F., and Holland J. 1997. “PVD CrxN coatings for tribological application on piston rings”, Surface and Coatings Technology, 97, 661–668.
  • Hammood, A.S., and Lieth, H.M. 2013. “A study the effect of retained austenite on fatigue life of austempering ductile iron by using artificial neural networks”, Int. J. Curr. Eng. Technol., 3, 1946-1951.
  • Holmberg, K., Andersson, P., and Erdemir, A. 2012. “Global energy consumption due to friction in passenger cars”, Tribology International, 47, 221-234.
  • Hsieh, J. H., Tan, A. L. K., Zeng, X. T. 2006. “Oxidation and wear behaviors of Ti-based thin films”, Surf. Coat. Tech., 201, 4094-4098.
  • Jang, C. S., Jeon, J. H., Song, P. K., Kang, M. C., & Kim, K. H. 2005. “Synthesis and mechanical properties of TiAlCxN1−x coatings deposited by arc ion plating”, Surface and Coatings Technology, 200(5-6), 1501-1506.
  • Kara, L., Özkan, D., Yağcı, M. B.,, Sulukan, E., Yaşar, S., and Sert, T. S. 2019. “Friction and wear behaviors of TiN coatings under dry and vacuum conditions”, Tribology Transactions, 62(3), 362-373.
  • Klimovich, I., Komarov, F., Zaikov, V., Opielak, M., & Kołtunowicz, T. N. 2018. “Optical properties of Ti-Al-CN films: effects of deposition parameters and carbon content”. Przegląd Elektrotechniczny, 94.
  • Kulkarni, A., Sargade, V., More, C. 2018. “Machinability investigation of AISI, 304 austenitic stainless steels using multilayer AlTiN/TiAlN coated carbide inserts”, Procedia Manuf., 20, 548-553.
  • Lackner, J. M., Waldhauser, W., Ebner, R., Keckes, J., & Schöberl, T. 2004. “Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications”, Surface and Coating Technology, 177-178, 447-452.
  • Larbi, A. B. C., and Tlili, B. 2006. “Fretting wear of multilayered PVD TiAlCN/TiAlN/TiAl on AISI 4140 steel”, Surface and Coatings Technology, 201, 1511-1518.
  • Lin, J., Wei, R., Bitsis, D. C., Lee, P. M. 2016. “Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications”, Surface & Coatings Technology, 298, 121-131.
  • Lyubimov, V. V., Voevodin, A. A., Yerokhin, A. L., Timofeev, Y. S., and Arkhipov, I. K. 1992. “Development and testing of multilayer physically vapour deposited coatings for piston rings”, Surface and Coatings Technology, 52(2), 145-151.
  • Mehran, Q. M., Fazal, M. A., Bushroa A. R., and Rubaiee S. 2018. “A critical review on physical vapor deposition coatings applied on different engine components”, Critical Reviews in Solid State and Materials Sciences, 43, 158-175.
  • Nakada, M. 1994. “Trends in engine technology and tribology”, Tribology International, 1994, 27, 3-8.
  • Özkan, D. 2018. “Friction behavior of TiAlN, AlTiN and AlCrN multilayer coatings at nanoscale”. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3), 451-458.
  • Paldey, S., Deevi, S. 2003. “Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review”, Mater. Sci. Eng. A, 342, 58-79.
  • Priyan, M. S., Santhosh, K., Sivaraman, M. A., Subith, S. and Sunil M. 2016. “Wear performance of Ti based powders coating on SS 304 by PVD method”, Journal of Materials Science & Surface Engineering, 4 (3), 372-375.
  • Shan, L., Wang, Y., Li, J., Li, H., Wu, X., and Chen, J. 2013. “Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater”. Surface and Coatings Technology, 226, 40-50.
  • Silva, F.S. 2006. “Fatigue on engine pistons –a compendium of case studies”, Engineering Failure Analysis, 13, 480-492.
  • Shtansky, D. V. 2009. “Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of max-phase Ti2 − хCrхAlC targets”, Surface and Coating Technology, 203, 3595-3609.
  • Tillmann, W., Grisales, D., Tovar, C. M., Contreras, E., Apel, D., Nienhaus, A., & Dias, N. F. L. 2020. “Tribological behaviour of low carbon-containing TiAlCN coatings deposited by hybrid (DCMS/Hipıms) technique”, Tribology International, 151,106528.
  • Tung, S. C., and Gao, H. 2003. “Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels”, Wear, 255, 1276-1285.
  • Vinoth, I. S., Detwal, S., Umasankar, V., and Sarma A. 2019. “Tribological studies of automotive piston ring by diamond-like carbon coating”, Tribology - Materials, Surfaces & Interfaces, 13(1), 31-38.
  • Wang, X., Kwon, P. Y., Schrock, D. 2013. “Friction coefficient and sliding wear of AlTiN coating under various lubrication conditions”, Wear, 304, 67-76.
  • Wei, Y., & Gong, C. 2011. “Effects of pulsed bias duty ratio on microstructure and mechanical properties of TiN/TiAlN multilayer coatings”. Applied Surface Science, 257(17), 7881-7886.
  • Zabala, B., Igartua, A., Fernández, X., Priestner, C., Ofner, H., Knaus, O., and Nevshupa, R. 2017. “Friction and wear of a piston ring/cylinder liner at the top dead centre: experimental study and modelling”. Tribology International, 106, 23-33.
  • Zeng, Y., Qiu, Y., Mao, X., Tan, S., Tan, Z., Zhang, X., & Jiang, J. 2015. “Superhard TiAlCN coatings prepared by radio frequency magnetron sputtering”, Thin Solid Films, 584, 283-288.
  • Zhang, X., Jiang, J., Yuqiao, Z., Lin, J., Wang, F., & Moore, J. J. 2008. “Effect of carbon on TiAlCN coatings deposited by reactive magnetron sputtering”, Surface and Coatings Technology, 203, 594-597.
  • Zhang, X., Jiang, J., Lin, J., & Moore, J. J. 2009. “Effect of N2 flow on low carbon TiAlNC coatings”, Surface and Coatings Technology, 203, 3450-3453.
  • Zhang, X., Qiu, Y., Tan, Z., Lin, J., Xu, A., Zeng, Y., & Jiang, J. 2014. “Effect of Al content on structure and properties of TiAlCN coatings prepared by magnetron sputtering”, Journal of Alloy and Compounds, 617, 81-85.
  • Zhuoa, S., Peijun, Z., Leheng, Z., Xinfua, X., Aiminb, H., and Wenquan, Z. 2000. “Multi layer compound coating on cast iron piston ring by multi-arc and magnetron sputtering ion compound plating technique”, Surface and Coatings Technology, 131, 422-427.
  • Wang, J., Yazdi, M. A. P., Lomello, F., Billard, A., Kovács, A., Schuster, F., & Dong, Z. 2017. “Influence of microstructures on mechanical properties and tribology behaviors of TiN/TiXAl1− XN multilayer coatings”. Surface and Coatings Technology, 320, 441-446.