Paslanmaya Maruz Kalmış Tam Ölçekli Betonarme Kolonların Monotonik Yükleme Etkisi Altında Yapısal Davranışlarının İncelenmesi: Korozyon Çalışmaları İçin Öneriler

Korozyona maruz kalmış betonarme yapıların sismik performanslarının tahmin edilmesi korozyona uğramamış yapılara göre daha zordur. Gerçekleştirilen bu deneysel çalışma ile birlikte korozyona maruz kalmış betonarme elemanları üzerine yapılacak olan çalışmalara ışık tutulması amaçlanmıştır. Beş adet tam ölçekli betonarme kolonu hızlandırılmış korozyon yöntemi kullanılarak farklı korozyon oranları için paslandırılmıştır. Paslandırılmış betonarme kolonları sabit eksenel yük altında monotonik yüklemeye tabi tutularak, akma ve nihai yükleri, süneklik oranları ve enerji yutma kapasiteleri deneysel olarak elde edilmiştir. Betonarme kolonlarındaki gerçek korozyon oranları yükleme deneylerinden sonra betonarme kolonlarının kırılarak ve gömülü olan tüm betonarme donatılarının çıkartılması ile elde edilmiştir. Yapılan deneysel çalışma sonucunda, monotonik yüklemenin tersinir-tekrarlanır yüklemeye göre zayıf yönleri göz önüne alınan deprem indeksleri açısından değerlendirilmiştir. Elde edilen deneysel sonuçlar doğrultusunda ileriki korozyon çalışmaları için önemli önerilerde bulunulmuştur. Gerçekleştirilen bu çalışma kapsamında, paslanmış betonarme kolonlarının monotonik yükleme etkisi altında süneklik oranları ve enerji yutma kapasiteleri artan korozyon oranına bağlı olarak azalmıştır. Monotonik yükleme etkisi altında pasın belirli oranlarına kadar sağlamış olduğu sargı etkisi ve buna bağlı olarak deprem indekslerindeki artışlar net bir şekilde görülememiştir. Tek doğrultuda göçme modu kabulü ile yapılacak olan sismik değerlendirmelerde kullanılmak üzere paslanmış betonarme kolonların süneklik ve enerji yutma kapasitelerinin tahmin edilebilmesi için iki ampirik model geliştirilmiştir. 

Investigation of Structural Behavior of Full-Scale Reinforced Concrete Columns Subjected to Corrosion under Monotonic Loading Effect: Suggestions for Corrosion Studies

The estimation of the seismic performance of reinforced concrete structures exposed to corrosion is more difficult than uncorroded structures. By this experimental study, it was aimed to keep light on the studies to be done on the reinforced concrete members exposed to corrosion. Five full-scale reinforced concrete columns were corroded for different corrosion levels by using the accelerated corrosion method. The corroded reinforced concrete columns were subjected to monotonic loading under constant axial load and, their yield and ultimate loads, ductility ratios and energy absorption capacities were obtained by experimentally. The actual corrosion levels in the reinforced concrete columns were obtained by breaking the reinforced concrete columns after the loading tests and extracting all embedded reinforced concrete bars from the concrete. As a result of this experimental study, the weaknesses of monotonic loading compared to reversed-cyclic loading were evaluated for considered earthquake indicators. Based on the obtained experimental test results, important recommendations were suggested for further corrosion studies. Within the scope of this study, the ductility ratios and energy dissipation capacities of corroded reinforced concrete columns were decreased as the corrosion levels were increased under the influence of monotonic loading. The confinement effect up to a certain value of corrosion levels and regarding with increasing in earthquake indicator could not been clearly observed under the influence of monotonic loading. Two empirical models to predict the ductility ratios and energy dissipation capacities were developed to be used for seismic assessment of corroded reinforced concrete columns considering the unilateral failure mode.

___

  • ASTM (American Standards for Testing and Materials), (2003). “Standard practice for preparing, cleaning, and evaluating corrosion test specimens” G1-03, West Conshohocken, PA, 1-9.
  • Ahmad, S. (2017). “Prediction of residual flexural strength of corroded reinforced concrete beams” Anti-Corros. Methods Mater., 64(1), 69-74.
  • Amleh, L., Ghosh, A. (2006). “Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite-element analysis” Can. J. Civ. Eng., 33(6), 673-682.
  • Auyeung, Y., Balaguru, P., Chung, L. (2000). “Bond behavior of corroded reinforcement bars” Mater. J., 97(2), 214-220.
  • Azad, AK., Ahmad, S., Al-Gohi, BHA. (2010). “Flexural strength of corroded reinforced concrete beams” Mag. Concr. Res., 62(6), 405-414.
  • Bicer, K., Yalciner, H., Pekrioglu, BA., Kumbasaroglu, A. (2018). “Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers” Constr. Build. Mater., 185, 574-588.
  • Campione, G., Cannella, F., Cavaleri, L. (2017). “Shear and flexural strength prediction of corroded RC beams” Constr. Build. Mater., 149, 395-405.
  • Chung, L., Cho, SH., Kim, JHJ., Yi, ST. (2004). “Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars” Eng. Struct., 26(8), 1013-1026.
  • Coronelli, D., Gambarova, P. (2004). “Structural assessment of corroded reinforced concrete beams: modeling guidelines” J. Struct. Eng., 130(8), 1214-1224.
  • FEMA (Federal Emergency Management Agency), (2007). “Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components” FEMA-461, Washington, DC, 1-113.
  • El Maaddawy, T., Soudki, K., Topper, T. (2005). “Long-term performance of corrosion-damaged reinforced concrete beams” ACI Struct. J., 102(5), 649-56.
  • El Maaddawy, T., Chahrour, A., Soudki, K. (2006). “Effect of fiber-reinforced polymer wraps on corrosion activity and concrete cracking in chloride-contaminated concrete cylinders” J. Compos. Constr., 10(2), 139-147.
  • Guo, A., Li, H., Ba, X., Guan, X., Li, H. (2015). “Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment” Eng. Struct., 105, 1-11.
  • Hanjari, KZ., Kettil, P., Lundgren, K. (2011). “Analysis of mechanical behavior of corroded reinforced concrete structures” ACI Struct. J., 108(5), 532-541.
  • Jnaid, F., Aboutaha, RS. (2016). “Residual flexural strength of corroded reinforced concrete beams” Eng. Struct., 119, 198-216.
  • Lee, HS., Kage, T., Noguchi, T., Tomosawa, F. (1999). “The evaluation of flexural strength of RC beams damaged by rebar corrosion” Proceeding of 8th International Conference, Durability of Building Materials and Components, Ottawa, Canada, 321-330.
  • Li, D., Wei, R., Xing, F., Sui, L., Zhou, Y., Wang, W. (2018). “Influence of Non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns” Constr. Build. Mater., 167, 20-32.
  • Liu, Y., Weyers, RE. (1998). “Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures” ACI Mater. J., 95(6), 675-680.
  • Ma, Y., Che, Y., Gong, J. (2012). “Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading” Constr. Build. Mater., 29, 548-556.
  • Malumbela, G., Alexander, M., Moyo, P. (2009). “Steel corrosion on RC structures under sustained service loads-A critical review” Eng. Struct., 31(11), 2518-2525.
  • Meda, A., Mostosi, S., Rinaldi, Z., Riva, P. (2014). “Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns” Eng. Struct., 76:112-23.
  • O’Flaherty, FJ., Mangart, PS., Lambert, P., Browne, EH. (2008). “Effect of under reinforcement on the flexural behaviour of corroded beams” Mater. Struct., 41(2), 311-321.
  • Paul, SC., Babafemi, AJ., Conradie, K., van, Zijl, GPAG. (2016). “Applied voltage on corrosion mass loss and cracking behavior of steel-reinforced SHCC and mortar specimens” J. Mater. Civil. Eng., 29(5), 1-9.
  • Sezen, H. (2000). “Seismic behavior and modeling of reinforced concrete building columns” Doctor of Philosophy, Engineering - Civil and Environmental Engineering, University of California, Berkeley, 1-336.
  • Yalciner, H., Eren, O., Sensoy, S. (2012). “An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level” Cem. Concr. Res., 42(5), 643-655.
  • Yalciner, H., Sensoy, S., Eren, O. (2015). “Seismic performance assessment of a corroded 50-year-old reinforced concrete building” J. Struct. Eng., 141(12), 1-11.
  • Yalciner, H. (2017). “Paslanmaya maruz kalmış betonarme kirişlerde geo-grid kullanımının süneklik üzerindeki etkisi” FBA-2016-330, Erzincan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, 13 pp.
  • Yang, SY., Song, XB., Jia, HX., Chen, X., Liu, XL. (2016). “Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar” Constr. Build. Mater., 121, 319-327.