On Existence and Uniqueness of Some Fractional Order Integro-Differential Equation

On Existence and Uniqueness of Some Fractional Order Integro-Differential Equation

In this study, a sufficient condition for the existence and uniqueness of some fractional order Integral-Differential equations is obtained. Therefore, the fixed point method is used to solve the differential equation problem involving nonlinear degree integrals. In addition, the results found is supported by examples.

___

  • [1] Petras, I. (2011). Fractional-order nonlinear systems modeling, Analysis and Simulation, Springer. New York.
  • [2] Ashyralyev A. (2009). A note on fractional derivatives and fractional powers of operators. JMAA. 357; 232-236.
  • [3] Ashyralyev A. (2013). Well-posedness of fractional parabolic equations, Boundary Value Problems. 31; 1-18.
  • [4] Ashyralyev A. and Cakir, Z. (2013). FDM for fractional parabolic equations with the Neumann condition. Advances in Difference Equations, 2013(120), doi:10.1186/1687-1847-2013-120.
  • [5] Ashyralyev A., Emirov N. and Cakir Z. (2014). Well-posedness of fractional parabolic differential and difference equations with Dirchlet-Neumann condition, Electronic Journal of Differential Equations. 2014 (97); 1-17.
  • [6] Podlubny, I. (1999). Fractional differential equations. Mathematics in science and engineering, vol 198. Academic Press. San Diego.
  • [7] Samko S.G., Kilbas A.A., Marichev O.I. (1993). Fractional Integrals and Derivatives. Gordon & Breach. Yverdon.
  • [8] Baleanu D, Garra, R, Petras, I. (2013). A fractional variational approach to the fractional Basset-Type equation, Reports on Mathematical Physics. 72 (1); 57-64.
  • [9] Diethelm, K. and Ford, J.N. (2002). Analysis of fractional differential equations. JMAA. 265; 229-248.
  • [10] Cona, L. (2017). Fixed point approach to Basset problem. New Trends in Mathematical Sciences. 5(3); 175-181.
  • [11] Cona, L. (2017). Fixed point approach to Bagley Torvik problem. Communication in Mathematical Modeling and Applications. 2(3), 50--57.
  • [12] Bai, Z., Sun, S. and Chen, Y.Q. (2014).The existence and uniqueness of a class of fractional differential equations. Abstract and Applied Analysis, Hindawi Publishing Corporation.2014;1-6.
  • [13] Ashyralyev A. (2013). Computational mathematics textbook, Shymkent.
  • [14] Kimeu, Joseph M. (2009). Fractional calculus: Definitions and applications. Masters Theses & Specialist Projects. Paper 115. (https://digitalcommons.wku.edu/theses/115)
  • [15] Kreyszig, E. (1978). Introductory functional analysis with applications, John Willey & Sons, New York.
  • [16] Caputo, M., Fabrizo, M. (2015). A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1(2), 73-85.
  • [17] Atangana, A. Baleanu, D. (2016). New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20(2), 757-763.
  • [18] Yang, X.J., Sirivasta, H.M., Machado, J.A.T. (2016). A new fractional derivatives without singular kernel: application to the modelling of the steady heat flow, Therm. Sci., 20, 753-756.
  • [19] Vanterler da Sausa, J., Capelas de Oliveira C., E. (2017). A new fractional derivative of variable order with non-singular order and fractional differential equations, arXiv: 1712.06506v1.
  • [20] Vanterler da Sausa, J., Capelas de Oliveira C., E. (2020). On the Ψ-Hilfer fractional derivative, Commun Nonlinear Sci. Numer, Simul. 60, 72-91.

___

APA Cona, L. & Bal, E. (2023). On Existence and Uniqueness of Some Fractional Order Integro-Differential Equation . Erzincan University Journal of Science and Technology , 16 (2) , 297-310 . DOI: 10.18185/erzifbed.1220243
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü