L929 Hücre Hattında Lipopolisakkaritle İndüklenen Sitotoksisite Modeli Üzerine Ferulago pauciradiata Boiss. & Heldr. Bitkisinin Kökünden İzole Edilen Prantşimgin Bileşiğinin Etkisinin İncelenmesi

L929 hücre hattında oluşturulan lipopolisakkarit (LPS) kaynaklı sitotoksisite modelinde Ferulago pauciradiata (Apiaceae) bitkisinin kök kısmından izole edilen prantşimgin (Prn) bileşiğinin etkisinin incelenmesi. L929 hücre hatları, 37°C'de %5 CO2'li inkübatörde standart hücre kültürü prosedürleri kullanılarak son konsantrasyonu 2 µL olacak şekilde Prn saf maddesi ve 1 saat sonra son konsantrasyonu 1 µL olacak şekilde LPS uygulandı. LPS uygulamasının ardından, gerekli olan 24, 48 ve 72 saat inkübasyon süreleri sonunda sitotoksik etkilerin belirlenmesi amacıyla kolorimetrik bir metot olan MTT protokolü uygulandı. IC50 değerleri, Prn için 0.28 µg/mL ve LPS için ise 1 µg/mL olarak hesaplandı. L929 hücre hatlarına LPS uygulanmasının zamana bağlı olarak hücresel indekste anlamlı derecede azalmaya neden olmuştur. Ayrıca Prn+LPS gruplarında ise sadece LPS uygulanan grubuna göre azalmış hücre indeksini, anlamlı derecede artırdığı hatta kontrole yaklaştırdığı tespit edilmiştir.L929 hücre hattına uygulana LPS ile oluşturulan sitotoksisite ve hücre hasarını Pnr uygulaması sonucunda düzeldiği tespit edildi.

Ferulago pauciradiata Boiss. & Heldr. Effects of Prantschimgin Compound Isolated from the Root of the Plant on LPS-Induced Inflammation Model in the L929 Cell Line

Investigation of the effects of prantchimgin (Prn) compound isolated from the root part of the Ferulago pauciradiata (Apiaceae) plant in the lipopolysaccharide (LPS) cytotoxicity model created in the L929 cell line. L929 cell lines were applied in a 5% CO2 incubator at 37 °C, using standard cell culture procedures, LPS was applied with Prn pure substance with a final concentration of 2 µL and 1 µL after 1 hour. Following the LPS application, the MTT protocol, a colorimetric method, was applied to determine cell viability at the end of the required 24th, 48th, and 72nd hours incubation times. IC50 values were calculated as 0.28 µg/mL for Pnr and 1 µg/mL for LPS. Application of LPS to L929 cell lines caused a significant decrease in cellular index depending on time. Also, in the Prn + LPS groups, it was found that the decreased cell index significantly increased even closer to the control compared to the LPS applied group. It was found that cyctoxicity and cell damage caused by LPS applied to the L929 cell line improved after Pnr application.

___

  • DIN EN ISO 10993-5: Biologische Beurteilung von Medizinprodukten—Teil 5: Prüfungen auf In-vitro-Zytotoxizität (ISO 10993-5:2009); German Version of EN ISO 10993-5:2009; International Organisation for Standardization: Geneva, Switzerland, 2009.
  • Hoang A.T. Dong-Cheol K., Wonmin K. 2017. Anti-inflammatory coumarins from Paramignya trimera. Pharmaceutical Biology, 55(1), 1195–1201.
  • Hsiao, C.Y., Hung, C.Y., Tsai, T.H., Chak, K.F. 2012. ‘A study of the wound healing mechanism of a traditional chinese medicine, Angelica sinensis, using a proteomic approach’, Evidence-Based Complementary and Alternative Medicine. 1-15.
  • Kasumbwe K., Kabange N., Venugopala N. 2017. Synthetic Mono/di-halogenated Coumarin Derivatives and Their Anticancer Properties. Anti-Cancer Agents in Medicinal Chemistry, 17(2),276-85.
  • Karakaya S., Koca M., Simsek D. 2018. Antioxidant, Antimicrobial and Anticholinesterase Activities of Ferulago pauciradiata Boiss. & Heldr. Growing in Turkey. Journal of Biologically Active Products from Nature, 8(6), 364-375.
  • Karakaya S., Özbek H., Güvenalp Z., Duman. 2017. Identification and Quantification of Coumarins in Four Ferulago Species (Apiaceae) Growing in Turkey by HPLC-DAD. J. Pharm. Sci. Exp. Pharmacol., 1, 35-42.
  • Kim, I.D., Ha, B.J. 2009. ‘Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity’, Toxicology in Vitro, 23 (6), 1014-1019.
  • Kutlu, Z., Celik, M., Bilen, A., Halici, Z., Yıldırım, S., Karabulut, S., Karakaya, S., Delimustafaoglu, F., Aydın, P. 2020.’ Effects of Umbelliferone isolated from the Ferulago pauciradiata Boiss. & Heldr. Plant on Cecal Ligation and Puncture-Induced Sepsis Model in Rats’, Biomedicine&Pharmacotherapy, 127, 110206.
  • Millar N.L., Murrell G.A.C., McInnes I.B. Alarmins in tendinopathy: unravelling new mechanisms in a common disease. Rheumatology (Oxford). 2012;In Press.
  • Mustafa Y.F., Najem M.A., Tawffiq Z.S. 2018. Coumarins from Creston Apple Seeds: Isolation, Chemical Modification, and Cytotoxicity Study. Journal of Applied Pharmaceutical Science, 8(08), 49-56.
  • Sheba, L.A., Anuradha, V. 2019. ‘An updated review on Couroupita guianensis Aubl: a sacred plant of India with myriad medicinal properties’, Journal of Herbmed Pharmacology, 9(1):1-11.
  • Srikrishna D., Godugu C., Pramod K. 2018. A Review on Pharmacological Properties of Coumarins. Mini Reviews in Medicinal Chemistry, 18(2),113-141.
  • Tokur, O., Aksoy, A. 2017. ‘In Vitro Sitotoksisite Testleri’, Harran Üniversitesi Veteriner Fakültesi Dergisi, 6 (1): 112-118.
  • Thomas W. Two types of fibroblast drive arthritis. 2019, Nature, 570,169-70.
  • Venugopala K.N., Rashmi V., Odhav B. 2013. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International,14.
  • Zhang, S., Ma, J., Sheng, L., Zhang, D., Chen, X.,Ynag, J., Wang, D. 2017.’ Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide-Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities’, Forintiers in Pharmacology, 8, 1-6.