Kızartma Prosesinin Atık Bitkisel Yağlardan Elde Edilen Biyodizel YAME Ürünü Üzerine Etkilerinin Araştırılması

Biyodizel genellikle yüksek saflıkta yağlar kullanılarak, alkali katalizörlü transesterifikasyon reaksiyonu ile üretilir. Ancak hammadde olarak yemeklik bitkisel yağların kullanımı, biyodizelin en önemli dezavantajlarından biri olan maliyetini arttırır. Her yıl tüm dünyada çok miktarda atık kızartma yağı oluşmaktadır. Bu yağlardan biyodizel üretilmesiyle, hem yakıt maliyetinin düşürülmesine yardımcı olunacak hem de çevreye ve ekonomiye önemli katkılar sağlanmış olunacaktır. Bitkisel yağların kızartma prosesi sırasında maruz kaldıkları pişirme şartları, yağda bir takım değişikliklere sebep olmaktadır. Yağdaki değişiklikler bunlardan üretilen biyodizelin de bazı özelliklerini etkilemektedir. Bu çalışmada, tuz oranı, su oranı, kızartma sıcaklığı ve kızartma süresi gibi farklı kızartma şartlarına maruz bırakılan ve atık hale getirilen üç farklı bitkisel yağdan biyodizel üretilmiştir. Bitkisel yağların kızartma şartlarının üretilen biyodizelin yağ asiti metil ester (YAME) ürününü nasıl etkilediği incelenmiştir. Biyodizel örneklerinin yağ asiti metil ester içerikleri gaz kromatografisi ile ölçülmüştür.  Sonuç olarak, tüm bitkisel yağların tuz oranı, su oranı, kızartma sıcaklığı ve kızartma süresi arttıkça üretilen biyodizel örneklerinin ürün miktarının azaldığı tespit edilmiştir. Ayrıca, kızartma prosesinin en fazla mısırözü yağını ve buna bağlı olarak mısırözü biyodizelini olumsuz yönde etkilediği de görülmüştür.  

Investigation of the Effects of Frying Process on Biodiesel YAME Product Obtained from Waste Vegetable Oils

Biodiesel is usually produced by the alkali-catalyzed transesterification reaction using high purity oils. However, the use of edible vegetable oils as raw material increases the cost, which is one of the most important disadvantages of biodiesel. Every year, a lot of waste frying oil is produced all over the world. By producing biodiesel from these oils, both the cost of fuel will be reduced and there will be significant environmental and economic benefits. The cooking conditions vegetable oils are subject to during the frying process cause some changes in the oil. Changes in the oil affect some properties of biodiesel produced from these oils. In this study, biodiesel was produced from three different vegetable oils which were exposed to different frying conditions such as salt content, water content, frying temperature and frying time. It has been investigated how frying conditions of vegetable oils affect the fatty acid methyl ester (FAME) product of the biodiesel produced. The fatty acid methyl ester contents of the biodiesel samples were measured by gas chromatography. As a result, it was determined that the product amount of biodiesel samples produced decreased as the salt content, water content, frying temperature and frying time of all vegetable oils increased. It has also been observed that the frying process has the greatest effect on corn oil and consequently corn oil biodiesel in the negative direction.

___

  • Alptekin, E., Çanakçı, M. 2006. Biyodizel ve Türkiye’nin Durumu. Mühendis ve Makine Dergisi, 47, 57-64.
  • Atmanli, A. 2016. Comparative analyses of diesel-waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, 176, 209-215.
  • Behçet, R., Aydın, S., Çakmak, A. 2012. Bitkisel ve hayvansal atık yağlardan üretilen biyodizellerin tek silindirli bir dizel motorda yakıt olarak kullanılması, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(4), 55-62.
  • Bobadilla, M.C., Lorza, R.L., Garcia, R.E., Gomez, F.S., Gonzalez, E.P.V. 2017. An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions. Energies, 10, 1-20.
  • Choe, E., Min, D.B. 2007. Chemistry of deep-fat frying oils. Journal Food Science, 72, 77-86.
  • Çanakçı, M., Özsezen, A.N. 2005. Evaluating waste cooking oils as alternative diesel fuel, Gazi University Journal of Science, 18, 81-91. Doğan, T.H. 2016. The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils. Renewable Energy, 94, 466-473.
  • Grant, G.E., Gude, V.G. 2013. Kinetics of Ultrasonic Transesterification of waste cooking oil. Environmental Progress & Sustainable Energy, 00, 1-8.
  • Guerra, E.M, Gude, V.G. 2014. Synergistic effect of simultaneous microwave and ultrasound irrdiations on transesterification of waste vegetable oil. Fuel, 137, 100-108.
  • Gupta, A.R., Yadav, S.V., Rathod, V.K. 2015. Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel, 158, 800-806.
  • Ma, F., Hanna, M.A. 1999. Biodiesel production: a review. Bioresource Technology, 70, 1-15.
  • Malins, K., Kampars, V., Kampare, R., Prilveka, J., Brinks, J., Murnieks, R. 2014. Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols. Fuel, 137, 28-35.
  • Phan, A.N, Phan, T.M. 2008. Biodiesel production from waste cooking oils. Fuel, 87, 3490-3496.
  • Ramirez, I.M., Arteagal, A.F., Alameda, E.J., Roman, M.G. 2016. Waste Frying Oils as Substrate for Enzymatic Lipolysis: Optimization of Reaction Conditions in O/W Emulsion. Journal of the American Oil Chemists’ Society, 93, 1487–1497.
  • Subbiah, V., Zwol, P.V., Dimian, A.C., Gitis, V., Rothenberg, G. 2014. Glycerol Esters from Real Waste Cooking Oil Using a Robust Solid Acid Catalyst. Topics in Catalysis, 57,1545–1549.