Kaplanmış Manyetik Kürelere DNA Adsorpsiyonu: Fiziksel ve Kimyasal Adsorpsiyonun Karşılaştırılması

Kendilerine has özellikleri nedeniyle çeşitli demir manyetik nanopartiküllerin ayırma ve yoğunlaştırma uygulamalarında mükemmel nanomateryal oldukları kanıtlanmıştır. Deoksiribonükleik asit (DNA) moleküllerinin manyetik kürelere immobilizasyonu son derece önemli olmakla birlikte DNA ekstraksiyonu, yoğunlaştırılması, biyosensörler, mikrodiziler ve yeni nesil dizileme gibi birçok teknikte potansiyel kullanım alanına sahiptir. Bu çalışmada, poli-l-lizin miktarı, başlangıç ​​DNA konsantrasyonu, iyonik kuvveti, bağlanma tipi ve DNA uzunluğunun değişen koşulları altında poli-l-lizin kaplı demir oksit manyetik küreler aracılığıyla tek iplik DNA'nın (ssDNA) adsorpsiyonu, gerçekleştirilmiştir. Adsorpsiyon işlemi Langmuir ve Freundlich izoterm modelleri ile incelenmiştir. Negatif yüklü DNA ile pozitif yüklü manyetik küreler arasındaki iyonik etkileşimi Freundlich adsorpsiyon izotermiyle çok katmanlı adsorpsiyon, modeli gösterirken, DNA ve yüzey arasındaki kovalent bağlanma Langmuir adsorpsiyon izoterminde daha yüksek adsorpsiyon verimi göstermiştir. Her iki adsorpsiyon yöntemi, manyetik kürelere uygun ssDNA adsorpsiyonu sağlamıştır.

Adsorption of DNA on Coated Magnetic Beads: Comparison of Physical and Chemical Adsorption

Based on their unique properties various iron magnetic nanoparticles have proved to be excellent nanomaterials for applications in separation and concentration process. Immobilization of deoxyribonucleic acid (DNA) molecules on the magnetic beads are acutely important and have potential uses in many techniques such as DNA extraction, concentration, biosensors, microarrays and next generation sequencing. In this study the adsorption of single stranded DNA (ssDNA) via poly-l-lysine coated iron oxide magnetic beads was performed under varying conditions of poly-l-lysine amount, initial DNA concentration, ionic strength, bonding type and length of DNA. The adsorption process was examined via Langmuir and Freundlich isotherm models. The ionic interaction between negatively charged DNA and positively charged surface of magnetic beads showed multilayer adsorption with Freundlich adsorption isotherm, covalent bonding between modified DNA and surface by crosslinking provided higher adsorption efficiency with Langmuir adsorption isotherm. Both adsorption methods provided magnetic beads with favorable adsorption of ssDNA.

___

  • Alexiou, C., Arnold, W., Klein, R.J., Parak,. F.G., Hullin, P., Bergemann, C., Erhardt, W., Wagenpfeil, S., Lübbe, AS. 2000. Locoregional cancer treatment with magnetic drug targeting, Cancer Research, 60 (23), 6641-8.
  • Almand, E.A., Goulter, R.M., Jaykus, L.A. 2016. Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H, Journal of Microbiological Methods, 128, 88-95.
  • Bayrac, C., Eyidoğan, F., Öktem, H.A. 2017. DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis, Biosensors and Bioelectronics, 98, 22-28.
  • Berensmeier, S. 2006. Magnetic particles for the separation and purification of nucleic acids, Applied Microbiology and Biotechnology, 73 (3), 495–504.
  • Bordelon, H., Russ, P.K., Wright, D.W., Haselton, F.R. 2013. A Magnetic Bead-Based Method for Concentrating DNA from Human Urine for Downstream Detection, Plos ONE, 8(7), e68369.
  • Fuks, L., Herdzik-Koniecko, I., Polkowska-Motrenko, H., Oszczak, A. 2018. Novel procedure for removal of the radioactive metals from aqueous wastes by the magnetic calcium alginate, International Journal of Environmental Science and Technology, 1-12.
  • Funada, M., Nakano, T., Moriwaki, H. 2018. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique, Journal of Hazardous Materials, 351, 232-239.
  • Gallo, J.M., Varkonyi, P., Hassan, E.E., Groothius, D.R. 1993. Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats, Journal of pharmacokinetics and biopharmaceutics, 21(5), 575-92.
  • Lee, K.H., Baek, M.K., Cho, E.S., Park, I.H. 2015. Magnetic Separation and Transfer of Wastewater Contaminants Using Magnetic Traveling Wave and Micro Magnetic Bead, IEEE Transactions on Magnetics, 11-15 May 2015, Beijing, China.
  • Lei, Z.M., An, Q.D., Fan, Y., Lv, J.L., Gao, C., Zhai, S.R., Xiao, Z.Y. 2016. Monolithic magnetic carbonaceous beads for efficient Cr(vi) removal from water, New Journal of Chemistry, 40(2), 1195-1204.
  • Lim, M.C., Lee, G.H., Huynh, D.T.N., Hong, C.E., Park, S.Y., Jung, J.Y., Park, C.S., Ko, S., Kim, Y.R. 2016. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk, Colloids and Surfaces B: Biointerfaces, 145, 854-861.
  • Pal, P., Edathil, A.A., Chaurasia, L., Rambabu, K., Banat, F. 2018. Removal of sulfide from aqueous solutions using novel alginate–iron oxide magnetic hydrogel composites, Polymer Bulletin, 1-21.
  • Sakudo, A., Baba, K., Ikuta, K. 2016. Capturing and concentrating adenovirus using magnetic anionic nanobeads, International Journal of Nanomedicine, 11 (9), 1847-1857.
  • Satoh, K., Iwata, A., Murata, M., Hikata, M., Hayakawa, T., Yamaguchi, T. 2003. Virus concentration using polyethyleneimine-conjugated magnetic beads for improving the sensitivity of nucleic acid amplification tests, Journal of Virological Methods, 114(1), 11-19.
  • Satoh, K., Iwata-Takakura, A., Yoshikawa, A., Gotanda, Y., Tanaka, T., Yamaguchi, T., Mizoguchi, H. 2008. A new method of concentrating hepatitis B virus (HBV) DNA and HBV surface antigen: An application of the method to the detection of occult HBV infection, Vox Sanguinis, 95(3), 174-180.