Friction Behavior of TiAlN, AlTiN and AlCrN Multilayer Coatings at Nanoscale

Bu çalışmada H13 çeliği üzerine fiziksel buharlaştırma yöntemi ile 3.5 mikron kalınlığa sahip çok katmanlı TiAlN, AlTiN ve AlCrN kaplamalar yapılmıştır. Kaplamaların sürtünme karakteristikleri sürtünme kuvveti mikroskopisi ile nano mertebede literatürde ilk kez araştırılmıştır. Sürtünme kuvveti ölçümleri değişen yükler altında atomic kuvvet mikroskopunun yatay kuvvet modunda gerçekleştirilmiştir. Sonuçlar AlTiN kaplamasının diğer kaplamalara göre düşük yüzey enerjisi nedeni ile üç kat daha az sürtünme katsayısına sahip olduğunu göstermiştir. Bu çalışmada Amonton yasasının nano mertebede sürtünme katsayısını bulmada geçerli olduğu gözlemlenmiştir.

Friction Behavior of TiAlN, AlTiN and AlCrN Multilayer Coatings at Nanoscale

In this study, 3.5 μm thick TiAlN, AlTiN, and AlCrN multilayer coatings were deposited on the H13 steel surface by physical vapor deposition (PVD) method. Friction behavior of these coatings was investigated by friction force microscopy for the first time at nanoscale in the literature. Friction force measurements were performed with the atomic force microscopy lateral force mode at various loads. Results showed that the AlTiN coating had three times lower COF value than the TiAlN and AlCrN coatings due to the lower surface energy. It was observed in this study that Amonton’s law was valid for the COF evolution at the nanoscale.

___

  • Asay, D.B., Kima, S.H. 2006. Direct force balance method for atomic force microscopy lateral force calibration. Review of Scientific Instruments, 77, 043903.
  • Badisch, E., Roy, M. 2013. Surface Engineering for Enchanged Performance against Wear, Springer, London.
  • Bhushan, B. 1999. Principles and Applications of Tribology.
  • Bhushan, B. 2001. Principles of tribology, Modern tribology handbook, Volume 1, CRC Press, New York.
  • Bhushan, B., Israelachvili, J.N., Landman, U. 1995. Nanotribology: friction, wear and lubrication at the atomic scale, Nature, 374, 607-616.
  • Buckley, D.H. 1981. Surface effects in adhesion, friction, wear, and lubrication, Tribology Series 5, Elsevier, 247-249.
  • Chu, S., Majumdar, A. 2012. Opportunities and challenges for a sustainable energy future, Nature, 488, 294-303.
  • Holmberg, K., Andersson, P., Erdemir, A. 2012. Global energy consumption due to friction in passenger cars, Tribology International, 47, 221-234.
  • Holscher, H., Schirmeisen, A., Schwarz, U. D. 2008. Principles of atomic friction: from sticking atoms to superlubric sliding, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366, 1383–1404.
  • Israelachvili, J.B., Chen, Y.L., Yoshizawa, H. 1994. Relationship between adhesion and friction forces, Journal of Adhesion Science and Technology, 8 (11), 1231-1249.
  • Lauda, P. 2007. Applications of thin coatings in automotive industry, Journal of Achievements in Materials and Manufacturing Engineering, 24, 51- 56.
  • Liew, W.Y.H., Jie, J.L.L., Yan, L.Y., Dayou, J., Sipaut, C.S., Madlan, M.F.B. 2013. Frictional and wear behavior of AlCrN, TiN, TiAlN single layer coatings, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding, Procedia Engineering, 68, 512-517.
  • Manini, N., Mistura, G., Paolicelli, G., Tosatti, E., Vanossi, A. 2017. Current trends in the physics of nanoscale friction, Advances in Physics: X, 2 (3), 569-590.
  • Mo, J.L., Zhu, M.H. 2009. Tribological oxidation behavior of PVD hard coatings, Tribology International, 42, 1758-1764.
  • Mo, J.L., Zhu, M.H., Lei, B., Leng, Y.X., Huang, N. 2007. Comparison of tribological behaviors of AlCrN and TiAlN coatings-Deposited by physical vapor deposition, Wear, 263, 1423-1429.
  • Mo, Y., Turner, K.T., Szlufarska, I. 2009. Friction laws at the nanoscale, Nature, 457, 1116-1119.
  • Otsuki, M., Matsukawa, H. 2013. Systematic Breakdown of Amontons’ Law of Friction for an Elastic Object Locally Obeying Amonton’s Law, Scientific Reports, 3, 1586.
  • Rosen, B.G., Ohlsson, R., Thomas, T.R. 1996. Wear of cylinder bore microtopography, Wear, 198, 271-279.
  • Ruan, J.A., Bhushan, B. 1993. Atomic-Scale Friction Measurements Using Friction Force Microscopy: Part I—General Principles and New Measurement Techniques, Journal of Tribology, 116(2), 378-388.
  • Sang, Y., Dubé, M., Grant, M. 2008. Dependence of friction on roughness, velocity, and temperature, Physical Review E, 77, 036123.
  • Spijker, P., Anciaux, G., Molinari, J.F. 2013. Relations between roughness, temperature and dry sliding friction at the atomic scale, Tribology International, 59, 222–229.
  • Stachowiak, G. W., Batchelor, A. W. 2000. Engineering tribology, Butterworth-Heinemann, 1-9.
  • Svahn, F., Rudolphi, A.K., Wallén, E. 2003. The influence of surface roughness on friction and wear of machine element coatings, Wear, 254, 1092–1098.
  • Xu, Q., Jensen, K.E., Boltyanskiy, R., Sarfati, R., Style, R.W., Dufresne, E.R. 2017. Direct measurement of strain-dependent solid surface stress, Nature Communications, 8 (555), 1-6.
  • Yang, J., Komvopoulos, K.A. 2005. Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects, on Atomic-Scale Friction, Journal Tribology, 127(3), 513-521.
  • Zhang, S.W. and Lan, H.Q. 2002. Developments in tribological research on ultrathin films, Tribology International, 35(5), 321-327.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü