Fabrication of A Superhydrophobic Surface with Silica Nanoparticles and Polytetrafluoroethylene

Bu çalışmada silika nanoparçacıkları ve Poly tetrafluoroethylene (PTFE) ile döndürmeli kaplama ve mikrodalga plazma kullanarak cam alttaş üzerine süperhidrofobik yüzey fabrikasyonu gerçekleştirilmiştir. Döndürmeli kaplama süresince süperhidrofobiklik üzerine döndürme hızı incelenmiş ve en büyük temas açısı için en iyi döndürme hızı belirlenmiştir. Argon ortamında mikrodalga plazmanın etkisiyle PTFE kaplı yüzeyin temas açısının 163o ile mikrodalga plazma uygulanmadığı duruma göre daha yüksek olduğu tespit edilmiştir. Hibrofobiklik, Wenzel ve CassieBaxter durumuna uyduğu görülmüştür. Üzerine PTFE kaplı SiO2 nanoparcacıklar içeren yüzeyin karakterizasyonu Taramalı Elektron Mikroskopu (SEM) ile ve oda sıcaklığında de iyonize su kullanarak temas açısı (CA) ölçümleri yapılmıştır

Silika Nanoparçacik ve Politetraforoetilen Kullanarak Süperhidrofobik Yüzey Fabrikasyonu

In this paper we fabricate a superhydrophobic surface with Silica nanoparticles and Poly tetrafluoroethylene (PTFE) by using spin coating and microwave plasma treatment on the glass substrate. During the spin coating, the effect of rotation speed on superhydrophobicity is investigated and the optimum rotation speed with high contact angle is identified. It is found that the reaction of PTFE by microwave argon plasma yields a superhydrophobic surface with contact angle of 163° which is more than the contact angle of the surface without microwave plasma coating. The hydrophobicity of the surface is explained based on Wenzel and Cassie-Baxter regime. The characterization of the rough structure including SiO2 nanoparticles aggregates coated by PTFE is carried out by Scanning Electron Microscopy (SEM), Contact Angle (CA) by contact angle goniometer with deionized water at room temperature

___

  • Foroughi Mobarakeh, L., Jafari, R., & Farzaneh, M. 2011. Superhydrophobic Surface Elaboration Using Plasma Polymerization of Hexamethyldisiloxane (HMDSO). Advanced Materials Research, 409, 783-787.
  • Gao, N., Yan, Y. Y., Chen, X. Y., & Mee, D. J. 2011. Superhydrophobic surfaces with hierarchical structure. Materials
  • Letters, 65(19-20), 2902-2905. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.matlet.2011 .06.088.
  • He, Z., Ma, M., Xu, X., Wang, J., Chen, F., Deng, H., Wang, K., et al. 2012. Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates. Applied Surface Science, 258(7), 2544- 2550. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.2011 .10.090.
  • Irzh, A., Ghindes, L., & Gedanken, A. 2011. Rapid deposition of transparent superhydrophobic layers on various surfaces using microwave plasma. ACS Applied Materials and Interfaces, 3(12), 4566- 4572.
  • Momen, G., & Farzaneh, M. 2012. A ZnObased nanocomposite coating with ultra water repellent properties. Applied Surface Science, 258(15), 5723-5728.
  • Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.apsusc.201 2.02.074.
  • Jung, C. Y. 2009. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction Dissertation.
  • Ramaratnam, K., Iyer, S. K., Kinnan, M. K., Chumanov, G., Brown, P., & Luzinov, I. 2008. Ultrahydrophobic textiles: Lotus approach. AATCC Review, 8(1), 42-48.
  • Xue, C. H., Jia, S. T., Zhang, J., & Ma, J. Z. 2010. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Science and Technology of Advanced Materials, 11(3), 033002