Artemisia campestrissubsp. glutinosa, Lavandula angustifolia Mill. ve Zingiber officinale uçucu yağlarının SPME / GC-MS ile analizi

Bitkilerin uçucu organik bileşik profilinin belirlenmesi, gıda kalitesi ve özgünlüğünün değerlendirilmesinde önemli araçlardandır. Bu çalışmanın amacı, Artemisia campestris L. subsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale Rosch. bitkilerinin gaz kromatografisi-kütle spektrometresi (SPME / GC-MS) kullanılarak organik uçucu bileşiklerinin tayini yapılmasıdır. SPME / GC-MS ile toplamda 33 uçucu bileşik belirlenmiştir. Zingiber officinale Rosch'da ana bileşen olarak α-curcumene (% 34.41) ve eucalyptol (% 20.91) belirlenirken Artemisia campestris subsp. glutinosa ‘de ise, camphor (%31.78) ve α-thujone (%16.82) ana bileşen olarak belirlenmiştir. Ayrıca, eucalyptol (%15.10) ve linalool (%11.98) ise L. angustifolia bitki ekstresinde başlıca uçucu bileşikler olarak tespit edilmiştir.

SPME/GC-MS analysis of Artemisia campestrissubsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale volatiles

The identification and quantification of the volatile organic compounds profile of the plants is an important tool for food quality and authenticity assessment. In that context, herewith the study, we aimed at quantifying the volatile compounds of three plants Artemisia campestris L. subsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale Rosch using Gas Chromatography-Mass Spectrometry (SPME/GC-MS). Thirty-three volatile compounds were revealed with SPME/GC-MS. Of the identified compounds, α-curcumene (34.41%) and eucalyptol (20.91%), were predominant compounds in Zingiber officinale Rosch. For Artemisia campestris subsp. glutinosa, camphor (31.78%), and α-thujone (16.82%) were noted as the most abundant volatile compounds. Besides eucalyptol (15.10%), and linalool (11.98%) were recorded as major volatile compounds in the Lavandula angustifolia Mill.

___

  • Akrout, A., Chemli, R., Chreïf, I., & Hammami, M. (2001). Analysis of the essential oil of Artemisia campestris L. Flavour and fragrance journal, 16(5), 337- 339.
  • Ali, A. M., & Ibrahim, A. M. (2018). Castor and camphor essential oils alter hemocyte populations and induce biochemical changes in larvae of Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 21(2), 631-637.
  • An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292-1300.
  • Aziz, Z. A., Ahmad, A., Setapar, S. H. M., Karakucuk, A., Azim, M. M., Lokhat, D., . . . Ashraf, G. M. (2018). Essential oils: extraction techniques, pharmaceutical and therapeutic potential-a review. Current drug metabolism, 19(13), 1100-1110.
  • Barkat, L., Boumendjel, A., Saoudi, M., El Feki, A., & Messarah, M. (2015). Artemisia campestris leaf aqueous extract alleviates methidathion-induced nephrotoxicity in rats. J Pharm Sci Rev and Res, 32(2), 200- 209.
  • da Silva, F. T., da Cunha, K. F., Fonseca, L. M., Antunes, M. D., El Halal, S. L. M., Fiorentini, Â. M., . . . Dias, A. R. G. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118, 107-115.
  • Dib, I., & El Alaoui-Faris, F. E. (2019). Artemisia campestris L.: review on taxonomical aspects, cytogeography, biological activities and bioactive compounds. Biomedicine & Pharmacotherapy, 109, 1884-1906.
  • Dib, I., Mihamou, A., Berrabah, M., Mekhfi, H., Aziz, M., Legssyer, A., . . . Ziyyat, A. (2017). Identification of Artemisia campestris L. subsp. glutinosa (Besser) Batt. from Oriental Morocco based on its morphological traits and essential oil profile. J Mater Environ Sci, 8(1), 180-187.
  • dos Santos Reis, N., de Santana, N. B., de Carvalho Tavares, I. M., Lessa, O. A., dos Santos, L. R., Pereira, N. E., . . . Franco, M. (2020). Enzyme extraction by lab-scale hydrodistillation of ginger essential oil (Zingiber officinale Roscoe): Chromatographic and micromorphological analyses. Industrial Crops and Products, 146, 112210.
  • EPA, U. (2017). Volatile Organic Compounds Impact on Indoor Air Quality. Recuperado de: https://www. epa. gov/indoor-air-quality-iaq/volatileorganiccompounds-impact-indoor-airquality# intro.
  • Essid, R., Rahali, F. Z., Msaada, K., Sghair, I., Hammami, M., Bouratbine, A., . . . Limam, F. (2015). Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Industrial Crops and Products, 77, 795- 802.
  • Funk, J. L., Frye, J. B., Oyarzo, J. N., Chen, J., Zhang, H., & Timmermann, B. N. (2016). Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition, 4(3), 123-131.
  • Ghlissi, Z., Sayari, N., Kallel, R., Bougatef, A., & Sahnoun, Z. (2016). Antioxidant, antibacterial, anti-inflammatory and wound healing effects of Artemisia campestris aqueous extract in rat. Biomedicine & Pharmacotherapy, 84, 115-122.
  • Hajhashemi, V., Ghannadi, A., & Sharif, B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of Ethnopharmacology, 89(1), 67-71.
  • Hamed, B. N., Serria, H. T., Lobna, M., & Khaled, Z. (2014). Aqueous leaves extract of Artemisia campestris inhibition of the scorpion venom induced hypertension. Journal Medicinal Plants Research, 8, 13.
  • Hosseini, J., Mamaghani, A. M., Hosseinifar, H., Gilani, M. A. S., Dadkhah, F., & Sepidarkish, M. (2016). The influence of ginger (Zingiber officinale) on human sperm quality and DNA fragmentation: A double-blind randomized clinical trial. International Journal of Reproductive BioMedicine, 14(8), 533.
  • Höferl, M., Stoilova, I., Wanner, J., Schmidt, E., Jirovetz, L., Trifonova, D., ... & Krastanov, A. (2015). Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Natural product communications, 10(6), 1934578X1501000672.
  • Jaouadi, I., Abdelkafi-Koubaa, Z., RiabiAyari, S., Hassen, I., Yakoubi, M. T., Ayeb, M. E., . . . Marrakchi, N. (2016). Antihemolytic and Anti-cytotoxic Effect of Two Artemisia Species (A. campestris and A. herba-alba) Essential Oil against Snake Venom. International Journal of Agriculture & Biology, 18(4).
  • Jianu, C., Pop, G., TGruia, A., & Horhat, F. G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. International journal of agriculture and biology, 15(4).
  • Juteau, F., Masotti, V., Bessière, J.-M., & Viano, J. (2002). Compositional characteristics of the essential oil of Artemisia campestris var. glutinosa. Biochemical Systematics and Ecology, 30(11), 1065-1070.
  • Koyuncu, M., & Tuncturk, Y. (2017). Effect of packaging method and light exposure on oxidation and lipolysis in butter. Oxidation Communications, 40(2), 785-798.
  • Leung, A. Y. (1980). Encyclopedia of common natural ingredients used in food, drugs, and cosmetics: Wiley. Lim, T. (2016). Zingiber officinale. In Edible Medicinal and Non-Medicinal Plants (pp. 469-560): Springer.
  • Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control, 84, 312-320.
  • Obeng-Ofori, D., Reichmuth, C., Bekele, A., & Hassanali, A. (1998). Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. International Journal of pest management, 44(4), 203-209.
  • Oliveira-Alves, S. C., Pereira, R. S., Pereira, A. B., Ferreira, A., Mecha, E., Silva, A. B., . . . Bronze, M. R. (2020). Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: Nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, 131, 109026.
  • Omidbaigi, R. (2000). Production and processing of medicinal plants, Vol. 3, Astan Quds Razavi Publications, Behnashr Co. Mashad, Iran, 27-31.
  • Onyenekwe, P. C., & Hashimoto, S. (1999). The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). European food research and technology, 209(6), 407-410.
  • Sefi, M., Fetoui, H., Makni, M., & Zeghal, N. (2010). Mitigating effects of antioxidant properties of Artemisia campestris leaf extract on hyperlipidemia, advanced glycation end products and oxidative stress in alloxan-induced diabetic rats. Food and Chemical Toxicology, 48(7), 1986-1993.
  • Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., . . . Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial pathogenesis, 134, 103580.
  • Trease, G., & Evans, W. (1989). Pharmacognosy (13th edn). Bailliere Tindall, London, 176-180.
  • Verma, R. S., Rahman, L. U., Chanotiya, C. S., Verma, R. K., Chauhan, A., Yadav, A., ... & Yadav, A. K. (2010). Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. Journal of the serbian chemical society, 75(3), 343-348.
  • Wang, C.-Z., Qi, L.-W., & Yuan, C.-S. (2015). Cancer chemoprevention effects of ginger and its active constituents: potential for new drug discovery. The American journal of Chinese medicine, 43(07), 1351- 1363.