ARALIK TİP-2 BULANIK TABANLI NASA-TLX YÖNTEMİ KULLANILARAK ZİHİNSEL İŞ YÜKÜNÜN DEĞERLENDİRİLMESİ: OTOMOTİV SEKTÖRÜNDE BİR UYGULAMA

Günümüzde üretim faaliyetlerinde kullanılan teknolojinin sürekli gelişmesi çalışana yüklenen zihinsel ağırlıklı görevlerin artmasına sebep olmuştur. Bunun sonucu olarak iş yükünün değerlendirilmesinde fiziksel iş yükünün yanında zihinsel iş yükünün de göz önünde bulundurulması ihtiyacı doğmuştur. Zihinsel ağırlıklı çalışmalarda iş yükünün artması çalışan performansının azalmasına neden olduğundan iş yükünün ölçülmesi ve gerekli önlemlerin alınması üretimin verimi açısından önem taşımaktadır. NASA-TLX (National Aeronautics and Space Administration-Task Load Index) zihinsel iş yükü ölçümünde subjektif bir yöntem olarak kolay uygulanabilir ve yüksek geçerliliğe sahip olması nedeniyle yaygın olarak kullanılmaktadır. İnsan düşüncesindeki belirsizlikleri matematiksel olarak ifade etme olanağı sağlayan bulanık küme teorisinin, subjektif değerlendirmelerin yapıldığı bu yönteme entegre edilmesi ile daha etkin sonuçlar elde etmek mümkün olacaktır. Bu sebeple, bu çalışmada, NASA-TLX yöntemi aralık tip-2 bulanık kümeler ile yeniden yapılandırılmış ve otomotiv sektöründe faaliyet gösteren bir firmada operatörlerin zihinsel iş yüklerinin değerlendirilmesinde kullanılmıştır. Operatörlerin hissettikleri zihinsel iş yüklerinin yaş, tecrübe, vardiya ve görev gibi değişkenlere göre farklılık gösterip göstermediği Minitab programı yardımıyla istatistiksel olarak analiz edilmiştir. Böylece, üretim kalitesinde sürdürülebilirliğin sağlanması ve firma içeresinde iş organizasyonu kapsamında gerçekleştirilebilecek iş rotasyonu, iş genişletme ve iş zenginleştirme faaliyetlerine temel oluşturacak bir yol haritası sunulması hedeflenmiştir.

EVALUATION OF MENTAL WORKLOAD BY USING INTERVAL TYPE-2 FUZZY-BASED NASA-TLX METHOD: A CASE STUDY IN AUTOMOTIVE INDUSTRY

Nowadays, it has needed to evaluate mental workload as well as physical workload for workload evaluation as a result of the increase in mental tasks with the continuous technological advances utilized in production activities. Since the workload increase in the mental works will cause a decrease in the performance of employees, it is crucial to measure this workload and to take necessary measures for production efficiency. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) method is commonly used for mental workload evaluation since it can be applied easily and has high validity as a subjective method. It will be possible to obtain more effective results via integration of this method which operates with subjective evaluations of employees with fuzzy set theory which enables to state uncertainties in human thinking as mathematically. Therefore, in this study, NASA-TLX method has been restructured with interval type-2 fuzzy sets and the proposed method has been utilized to evaluate mental workloads of employees in a company operating in the automotive industry. It has been statistically analyzed that whether the mental workloads of employees differentiate according to variables such as age, experience, shift and task through Minitab program. Thus, it has been aimed to provide sustainability in production quality and to present a roadmap for job rotation, job expansion and job enrichment activities of the company in the scope of job organization.

___

  • Adar, T. & Kılıç Delice, E. (2017). Evaluating mental work load using Multi-criteria Hesitant Fuzzy Linguistic Term Set (HFLTS). Turkish Journal of Fuzzy Systems, 8(2), 90-101.
  • Aktaş Potur, E., Toptancı, Ş. & Kabak, M. (2022). Mental Workload Assessment in Construction Industry with Fuzzy NASA-TLX Method. Sixteenth International Conference on Management Science and Engineering Management, 729-742, Springer, Cham.
  • Akyeampong, J., Udoka, S., Caruso, G. & Bordegoni, M. (2014). Evaluation of hydraulic excavator Human–Machine Interface concepts using NASA TLX. International Journal of Industrial Ergonomics, 44(3), 374-382.
  • Bell, S. W., Kong, J. C. H., Clark, D. A., Carne, P., Skinner, S., Pillinger, S., Burton, P. & Brown, W. (2022). The National Aeronautics and Space Administration- task load index: NASA-TLX: evaluation of its use in surgery. ANZ Journal of Surgery, 92, 3022- 3028.
  • Can, G. F. (2018). Intuitionistic Fuzzy Tlx (IF-TLX): Implementatıon Of Intıtuıonıstıc Fuzzy Set Theory For Evaluatıng Subjectıve Workload. Journal of Turkish Operations Management, 2(1), 79-90.
  • Chen, SM. & Lee, LW. (2010). Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Systems with Applications, 37, 824-833.
  • Çelik, E. & Akyüz, E. (2018). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Ocean Engineering, 155, 371-381.
  • Emeç, Ş. & Akkaya, G. (2018). Sağlık Sektöründe Zihinsel İş Yükü Değerlendirmesi Ve Bir Uygulama. Ergonomi, 1(3), 156-162.
  • Esengün, M. & İnce, G. (2016). Mobil Navigasyon Uygulamalarının Kullanıcı Deneyimi Açısından Karşılaştırılması. 24th Signal Processing and Communication Application Conference (SIU), 241-244, Zonguldak.
  • Galy, E., Paxion, J. & Berthelon, C. (2018). Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics, 61(4), 517-527.
  • Gao, Q., Wang, Y., Song, F., Li, Z. & Dong, X. (2013). Mental workload measurement for emergency operating procedures in digital nuclear power plants. Ergonomics, 56(7), 1070-1085.
  • Gönen Ocaktan, D., Karaoğlan, A. D., Akça, A. & Oral, A. (2021). Tekrarlanan işlerde algılanan zihinsel iş yükü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 84-95.
  • Harputlu Aksu, Ş., Çakıt, E. & Dağdeviren, M. (2023). Investigating the Relationship Between EEG Features and N-Back Task Difficulty Levels With NASA-TLX Scores Among Undergraduate Students. Intelligent Human Systems Integration, 69, 115-123.
  • Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advances in Psychology, 52, 139-183.
  • Hermansyah, M. S. A. & Handayani, N. U. (2022). NASA-TLX Assessment of Mental Workload in Manufacturing Industry. Spektrum Industri, 20(2), 1–14.
  • Hernandez, R., Roll, S. C., Jin, H., Schneider, S. & Pyatak, E. A. (2022). Validation of the National Aeronautics and Space Administration Task Load Index (NASA-TLX) adapted for the whole day repeated measures context. Ergonomics, 65(7), 960-975.
  • Kahraman, C., Öztayşi, B., Uçal Sarı, İ. & Turanoğlu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57.
  • Karadağ, M. & Cankul, İ. H. (2015). Hemşirelerde Zihinsel İş Yükü Değerlendirmesi. Anadolu Hemşirelik ve Sağlık Bilimleri Dergisi, 18(1), 26- 34.
  • Kılıç Delice, E. & Can, G. F. (2018). An Integrated Mental Workload Assessment Approach Based on NASA-TLX and SMAA-2: A Case Study. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 26(2), 88-99.
  • Kılıç Delice, E. (2016). Acil Servis Hekimlerinin Nasa- Rtlx Yöntemi İle Zihinsel İş Yüklerinin Değelendirilmesi: Bir Uygulama Çalışması. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 30(3), 645-662.
  • Kılıç, M. & Kaya, İ. (2015). Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Applied Soft Computing, 27, 399-410.
  • Li, S., Liu, Y., Li, K., Cao, G., Li, S., Mao, Y., Wang, Y., Feng, J. & Tang, S. (2023). Validation and effect of the NASA-TLX score on the assessment of the workload of pediatric robotic operations. Surgical Endoscopy, DOI: 10.1007/s00464-023- 09959-y.
  • Mamak Ekinci, E. B. & Can, G. F. (2018). Algılanan İş Yükü Ve Çalışma Duruşları Dikkate Alınarak Operatörlerin Ergonomik Risk Düzeylerinin Çok Kriterli Karar Verme Yaklaşımı İle Değerlendirilmesi. Ergonomi, 1(2), 77-91.
  • Mansikka, H., Virtanen, K. & Harris, D. (2019). Comparison of NASA-TLX scale, modified Cooper–Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks. Ergonomics, 62(2), 246-254.
  • Mendel, J. M., John, R. I. & Liu, F. (2006). Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Transactions on Fuzzy Systems, 14(6), 808-821.
  • Mohammadian, M., Parsaei, H., Mokarami, H. & Kazemi, R. (2022). Cognitive demands and mental workload: A filed study of the mining control room operators. Heliyon, 8, e08860.
  • Mouzé-Amady, M., Raufaste, E., Prade, H. & Meyer JP. (2013). Fuzzy-TLX: using fuzzy integrals for evaluating human mental workload with NASA- Task Load indeX in laboratory and field studies. Ergonomics, 56(5), 752-763.
  • Priska, H. A., Aurellia, K., Putri, F. A., Zaidan, A. & Basumerda, C. (2022). Mental Workload Analysis of Employees in the Customer Care Department of PT. XYZ Using NASA-TLX Method. Proceeding International Conference on Religion, Science and Education, 1, 735-738.
  • Riono, R., Suparno, S. & Bandono, A. (2018). Analysis of Mental Workload with Integrating NASA-TLX and Fuzzy Method. International Journal of ASRO, 1(1), 37-45.
  • Ruiz-Rabelo, J. F., Navarro-Rodriguez, E., Di-Stasi, L. L., Diaz-Jimenez, N., Cabrera-Bermon, J., Diaz- Iglesias, C., Gomez-Alvarez, M. & Briceno- Delgado, J. (2015). Validation of the NASA-TLX Score in Ongoing Assessment of Mental Workload During a Laparoscopic Learning Curve in Bariatric Surgery. Obesity Surgery, 25(12), 2451- 2456.
  • Tubbs-Cooley, H. L., Mara, C. A., Carle, A. C. & Gürses, A. P. (2018). The NASA Task Load Index as a measure of overall workload among neonatal, paediatric and adult intensive care nurses. Intensive & Critical Care Nursing, 46, 64-69.
  • Virtanen, K., Mansikka, H., Kontio, H. & Harris, D. (2022). Weight watchers: NASA-TLX weights revisited. Theoretical Issues in Ergonomics Science, 23(6), 725-748.
  • Walters, C. & Webb, P. J. (2017). Maximizing Efficiency and Reducing Robotic Surgery Costs Using the NASA Task Load Index. AORN JOURNAL, 106(4), 283-294.
  • Wang, Y., Chardonnet, JR. & Merienne, F. (2021). Enhanced cognitive workload evaluation in 3D immersive environments with TOPSIS model. International Journal of Human-Computer Studies. 147, 102572.
  • Widiastuti, R., Nurhayati, E., Wardani, D. P., & Sutanta, E. (2020). Workload measurement of batik workers at UKM batik jumputan Yogyakarta using RULA and NASA-TLX. Journal of Physics: Conference Series, 1456, 1-7.
  • Yağmuroğlu, Z., Günaydın, H. M. & Kale, S. (2011). İş Gereksinim Analizi Yönteminin İş Güvenliği Bağlamında İncelenmesi. 3. İşçi Sağlığı ve İş Güvenliği Sempozyumu, 195-200, Çanakkale.
  • Yener, Y., Can, G. F. & Toktaş, P. (2019). Fiziksel Zorlanma Ve Algılanan İş Yükü Düzeylerini Dikkate Alan Bir İş Rotasyonu Önerisi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 27(1), 9-20. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 8(3), 199-249.