Tatlı Su Midyelerine (Unio mancus) İmidakloprid Uygulanmasının Solungaç ATPaz Aktiviteleri Üzerine Etkisi

Dünya çapında yaygın olarak kullanılan sistemik bir neonikotinoid insektisit olan imidaklopridin (IMI) tatlı su kütlelerine karışması, ekosistem sağlığı açısından endişe uyandırmaktadır. IMI'nin hedef dışı organizmalar olan tatlı su midyeleri üzerindeki ölümcül olmayan etkileri hakkında bilgi eksikliği vardır. Bu çalışmada, 96 saat boyunca dört IMI konsantrasyonuna (1.25, 12.5, 125 ve 1250 µg AI L-1) maruz kalan tatlı su midyelerinde (Unio mancus) bu böcek ilacının potansiyel toksik etkilerini belirlemek amaçlanmıştır. Bunun için midyelerin toksik kirleticilerle ilk etkileşim organı olan solungaçlarında Na+/K+-ATPaz, Mg2+-ATPaz, Ca2+-ATPaz ve toplam ATPaz aktiviteleri değerlendirilmiştir. IMI maruziyetinin, bütün ATPaz türlerini kontrole göre önemli oranda inhibisyona uğrattığı gözlenmiştir. Sonuç olarak, IMI’nin ATPaz’ların aktivitesini bozarak hücrelerde iyon homeostazını ve enerji sentezini yıkıcı bir etkiye sahip olduğu, bunun da midyelerin genel metabolizmasını etkileyebileceği söylenebilir. Sonuçlarımız, tatlı su ekosistemlerinde yaşayan midyelerin IMI'ye maruz kalma nedeniyle zarar görebilecekleri olası sonuçlar konusunda bir erken uyarı verme niteliğindedir.

___

  • [1] Srivastava, A., Jangid, N.K., Srivastava, M., Rawat, V. 2018. Chapter 1. Pesticides as Water Pollutants. Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. DOI: 10.4018/978-1-5225-6111-8.ch001
  • [2] Nauen, R., Hungenberg, H., Tollo, B., Tietjen, K., Elbert, A. 1998. Antifeedant effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in Myzus persicae and Myzus nicotianae. Pesticide Management Science, 53, 133-140.
  • [3] Okazawa, A., Akamatsu, M., Ohoka, A., Nishiwaki, H., Cho, W.J., Nakagawa, N., Ueno, T. 1998. Prediction of the binding mode of imidacloprid and related compounds to house-fly head acetylcholine receptors using three-dimensional QSAR analysis. Pesticide Science, 54, 134-144.
  • [4] Butcherine, P., Benkendorff, K., Kelaher, B., Barkla, B.J. 2019. The risk of neonicotinoid exposure to shrimp aquaculture. Chemosphere, 217, 329-348.
  • [5] USEPA, 2014. OPP Pesticide Toxicity Database. http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm. January 25, 2017.
  • [6] Miranda, G.R.B., Raetano, C.G., Silva, E., Daam, M., Cerejeira, M.J. 2011. Environmental fate of neonicotinoids and classification of their potential risks to hypogean, epygean, and surface water ecosystems in Brazil. Human Ecological Risk Assessment, 17, 981-995.
  • [7] Benedetti, M., Gorbi, S., Fattorini, D., D'Errico, G., Piva, F., Pacitti, D., Regoli, F. 2014. Environmental hazards from natural hydrocarbons seepage: integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species. Environmental Pollution ,185, 116-126.
  • [8] Scudiero, R., Cretì, P., Trinchella, F., Esposito, M.G. 2014. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends. Comptes Rendus Biologies, 337(7), 451-458.
  • [9] Kumar, A., Prasad, M.R., Srisvatav, K., Tripathi, S., Srivastav, A.K. 2010. Branchial histopathological study of Heteropneustes fossilis following exposure to purified neem extract, azadirachtin. World Journel of Zoology, 5, 239-243.
  • [10] Pham, B., Miranda, A., Allinson, G., & Nugegoda, D. 2017. Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. Ecotoxicology and Environmental Safety, 143, 283-288.
  • [11] USEPA, Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides; OPP Aquatic Life Benchmarks, 2017. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life benchmarks-and-ecological-risk#benchmarks [accessed 10 April 2019].
  • [12] Bradford, M.M. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • [13] Atli, G., Canli, M. 2011. Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology, 20(8), 1861-1869.
  • [14] Atkinson, A., Gatenby, A. D., Lowe, A. G. 1973. The determination of inorganic orthophosphate in biological systems. Biochimica et Biophysica Acta, 320, 195-204.
  • [15] Korkmaz, V., Güngördü, A., Ozmen, M. 2018. Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicology and Environmental Safety, 160, 265-272.
  • [16] Chhaya, J., Thaker, J., Mittal, R., Nuzhat, S., Mansuri, A.P., Kundu, R. 1997. Influence of textile dyeing and printing industry effluent on ATPases in liver, brain, and muscle of mudskipper, Periophthalmus dipes, Bulletin of Environmental Contamination and Toxicology, 58, 793-800.
  • [17] Liu, D., Chen, H.G.Z., Wang, Y. 2014. Effect of cadmium on the extracellular Na+, K+, and Ca2+ in the gill and small intestine of Goldfish Carassius auratus. Environmental Toxicology and Pharmacology, 3(7), 672-678.
  • [18] David, M., Sangeetha, J., Harish, E.R., Shrinivas, J., Naik, V.R. 2014. Deltamethrin induced alteration in Na+-K+, Mg2+, Ca2+ associated ATPases activity in the freshwater fish Cirrhinus mrigala. International Journal of Pure and Applied Zoology, 2(2), 175-181.
  • [19] Watson, T.A., Beamish, F.W.H. 1980. Effects of zinc on branchial ATPase activity in vivo in rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiolology Part C, 66, 77-82.
  • [20] Dang, Z., Lock, R.A.C., Flik, G., Wendelaar Bonga, S. 2000. Na+/K+-ATPase immuno-reactivity in branchial chloride of Oreochromis mossambicus exposed to copper. Journal of Experimental Biology, 20, 370-387.
  • [21] Balaji, G., Nachiyappan, M., Venugopal, R. 2015. Sub-Lethal Effect of Cypermethrin on Ca+ , Mg+ and Na+/K+-ATPase Activity in Fresh Water Teleost, Cyprinus carpio. World Journal of Zoology, 10(3), 168-174.
  • [22] Ma, J., Zhu, J., Wang, W., Ruan, P., Rajeshkumar, S., Li, X. 2019. Biochemical and molecular impacts of glyphosate-based herbicide onthe gills of common carp. Environmental Pollution, 252, 1288-1300.
  • [23] Begum, G. 2011. Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiology and Biochemistry, 37, 61-69.
  • [24] Begum, G., Vijayaraghavan, S. 1994. In vivo inhibition of branchial Na+-K+, Mg+2 ATPase of Clarias batrachus exposed to sub-lethal concentration of dimethoate. Pollution Research, 13, 213-216.
  • [25] Parvez, S., Sayeed, I., Raisuddin, S. 2006. Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent. Ecotoxicology and Environmental Safety, 65, 2-66.
  • [26] Shwetha, A.D., Hosetti, B.B. 2012. Effect of exposure to sublethal concentrations of zinc cyanide on tissue ATPase activity in the fresh water fish, Cirrhinus mrigala (HAM). Archives of Biological Sciences Belgrade, 64, 257-263.
  • [27] Begum, G. 2009. Enzymes as biomarkers of cypermethrin toxicity: response of Clarias batrachus tissues ATPase and glycogen phosphorylase as a function of exposure and recovery at sublethal level. Toxicology Mechanisms and Methods, 19, 29-39.
  • [28] Saxena, T.B., Zachariassen, K.E., Jorgensen, L. 2000. Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comparative Biochemistry and Physiology, 127, 1-9.
  • [29] Balasundaram, K., Ramalingam, K., Selvarajan, V.R. 1995. Phosalone poisoning on the cation-linked ATPases of central nervous system of Rana tigrina (Daudin). Comparative Biochemistry and Physiolology Part C, 111, 451–455.
  • [30] Comoglio, L., Amin, O., Roque, A., Betancourt-Lozano, M., Anguas, D., & Haro, B. M. 2005. Evaluation of sublethal biomarkers in Litopenaeus vannamei on foodborne exposure to methyl parathion. Ecotoxicology and Environmental Safety, 62(1), 66-74.
  • [31] Yoloğlu, E. 2019. Assessment of Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and total ATPase activities in gills of freshwater mussels exposed to penconazole. Commagene Jounal of Biology, 3, 88-92.
  • [32] Uçkun, A.A., Öz, Ö.B. 2020. Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish ( Astacus leptodactylus Eschscholtz, 1823) by using oxidative stress enzymes, ATPases and cholinesterase as biomarkers. Drug and Chemical Toxicology, DOI: 10.1080/01480545.2020.1774604
  • [33] Uçkun, A.A., Öz, Ö.B. 2020. Acute exposure to the fungicide penconazole affects somebiochemical parameters in the crayfish (Astacus leptodactylusEschscholtz, 1823). Environmental Science and Pollution Research, 27, 35626–35637.
  • [34] Marigoudar, S.R. 2012. Cypermethrin induced some pathophysiological and biochemical changes in the freshwater teleost, Labeo rohita (Hamilton). PhD Thesis, Karnatak University, Dharwad, India.