Sodyum arsenit ve krom (III) klorürün Drosophila melanogaster ’ in eşey oranı ve bazı gelişimsel özellikleri üzerine etkileri

Bu araştırmada, sodyum arsenit ve krom (III) klorürün, Drosophila melanogaster’ in ergin bireylerinde, eşey oranı, larva gelişimi ve başkalaşım süresi üzerine etkileri araştırılmıştır. Araştırmada, LC50 değerinin altında olan beş konsantrasyon (0.05, 0.5, 1.0, 2.5 ve 5.0 ml) denenmiştir. Metal çözeltisi Drosophila melanogaster’ e beslenme yoluyla uygulanmıştır. Metal çözeltisi içeren besi yerinde gelişen ergin bireyler, dişi ve erkek eşey ayrımı yapılarak incelenmiştir. Toplam 45163 birey cinsiyet ayrımı yapılarak sayılmıştır. Her iki maddenin hem ayrı hem de birlikte uygulanmasıyla bazı konsantrasyonlarda eşey oranında beklenen 1:1 oranından sapma gözlenmiştir. Eşey oranı, dişi bireylerin oranında artışı ile değişmiş ve erkek bireylerin gelişim sürecinde toksik etkiye karşı daha hassas olduğu bulunmuştur. Larva gelişimi konsantrasyonla doğru orantılı olarak aksamıştır. Özellikle yüksek konsantrasyonlarda gelişim oranı % 35-40 oranına kadar düşmüştür. Fakat başkalaşım süresinde iki nesilde de aksama gözlenmemiştir.

Effects of sodium arsenite and chromium (ııı) chloride on sex ratio and some development properties of Drosophila melanogaster

In this research the effects of sodium arsenite and chromium (III) chloride on sex ratio, larval development and metamorphosis duration of Drosophila melanogaster adults have been investigated. In the research five concentrations below LC50 value (0.05, 0.5, 1.0, 2.5, and 5.0 ml) have been tested.Metallic solution has been applied by feeding to Drosophila melanogaster. Adults which developed in medium containing metallic solution have been studied through separating them as females and males. Totally 45163 individuals were counted by gender separation. With application of the two substances both separately and together, deviation from expected 1:1 sex ratio has been observed at some concentrations. Sex ratio has changed as an increase in ratio of female individuals and it has been found that male individuals were more sensitive to toxic effect during development. Larval development failed directly proportional to the concentration. Particularly in high concentrations, development ratio has decreased to 35-40 %. However, in metamorphic duration, no failure has been observed in both generations.

___

  • Friberg L., Nordberg G.F., Vouk, VB., Handbook on The Toxicology of Metals, 2.ed., General Aspects, Elsevier, Amsterdam, 1986.
  • Berman E., Toxic Metals and Their Analysis, Heyden and Son Ltd., London, 1980.
  • Ortiz JGM., Opoka R., Kane D., Cartwright IL., Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicological Sciences, 107 (2) (2009) 416.
  • Rizki M., Kossatz E., Xamena N., Creus A., Marcos R., Influence of sodium arsenite on the genotoxicity of potassium dichromate and ethyl methanesulfonate: studies with the wing spot test in Drosophila. Environ Mol Mutagen., 39 (2002) 49.
  • Alekperov İ., Aliyev E., Hazar denizi pelajik siliat toplulukları üzerine bazı ağır metallerin toksik etkilerinin araştırılması, Turk. J. Zool., 20 (1996) 11.
  • Ramos-Morales P., Rodriguez-Arnaiz R., Genotoxicity of two arsenic compounds in germ cells and somatic cells of Drosophila melanogaster. Environ. Mol. Mutagen., 25 (1995) 288.
  • Rizki M., Kossatz E., Velazquez A., Creus A., Farina M., Fortaner S., Sabbioni E., Marcos R., Metabolism of arsenic in Drosophila melanogaster and the genotoxicity of dimethylarsinic acid in the Drosophila wing spot test. Mutagenesis, 47 (2006)162.
  • Calvo C., Bolado S., Alvarez-Benedí J., Andrade MA., Arsenic uptake and accumulation in curly endives (Cichorium endivia L.) irrigated with contaminated water. J. Environ. Sci. Health B., 41 (4) (2006) 459.
  • Hepburn DD., Xiao J., Bindom S., Vincent JB., O'Donnell J., Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster. Proc. Natl. Acad. Sci., 100(7) (2003) 3766.
  • Katz AJ, Chiu A, Beaubier J, Shi X., Combining Drosophila melanogaster somatic-mutation- recombination and electron-spin-resonance- spectroscopy data to interpret epidemiologic observations on chromium carcinogenicity. Mol. Cell Biochem. 222 (2001) 61.
  • De Flora S., Bennecelli C., Bagnasco M., Genotoxicity of mercury compounds. A rewiew. Mutat. Res., 238 (1994) 99.
  • Stella M., Montaldi A., Rossi A., Clastogenic effects of chromium on human lymphocytes in vitro and in vivo. Mutat. Res., 101 (1982) 151.
  • Rodriguez – Arnaiz R., Martinez, Genetic effects of potassium dichromate and chromium trioxide in Drosophila melanogaster. Cytologia, 51 (1986) 421.
  • Stallings DM, Hepburn DD, Hannah M, Vincent JB, O'Donnell J., Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutat. Res. 610 (2006) 101.
  • Mukhopadhyay I, Saxena DK, Chowdhuri DK, Hazardous effects of effluent from the chrome plating industry: 70 kda heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70- lacZ). Environmental Health Perspectives, 111 (16) (2003) 1926.
  • Rasmuson A., Mutagenic effects of some water- soluble metal compounds in a somatic eye-color test system in Drosophila melanogaster. Mutat. Res., 157 (2-3) (1985) 157.
  • Ahmed ZU, Walker GW, The effects of urethane, sodium monohydrogen arsenate and selenocystine on crossing-over in Drosophila melanogaster. Can. J. Genet. Cytol., 17 (1) (1975) 55.
  • Uysal H., Kaya Y., Toxicity of Eupharbia canariensis latex to some developmental stages of Drosophilidae). Archives of Environmental Contamination and Toxicology, 72 (2004) 45.
  • Mirabolghasemi G, Mahnaz A, Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields, Bioelectromegnetics, 23 (2002) 416.
  • Yeşilada E., Bozcuk AN., Bozcuk S., Topcuoğlu F., Absisik asit ve kinetinin D. melanogaster’ in eşey oranı ve ergin morfolojisi üzerine etkisi. Turk. J. Biol., 20 (1996) 171.
  • Ochi T., Kaise T., Oya-Ohta Y., Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB / C 313 cells. Experientia, 50 (1994) 115.
  • Ware WG., Pesticides Theory and Application, University of Arizona (1983).
  • Liu D., Jiang W., Li M., Effect of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas, 117 (1992) 23.
  • Yalçın Ş., Özcan B., Kadayıfçı D., Yavuz A., Asi nehrinde toplam krom ve siyanür konsantrasyonlarının tespiti, III. Ulusal Ekoloji ve Çevre Kongresi, Kırşehir, 518 (1997) 3-7 Eylül.
  • Islam MS., Khan MAR., Barman PC., Ali, SI., Effect of copper and ferrous sulphates on offspring production in D. melanogaster. Drosophila Information Service, 63 (1986) 68.
  • Pascow D., Williams KA., Green DWJ., Choronic toxicity of cadmium to Chironomus riparius (Meigen) effects upon larval development and adult emergence. Hidrobiologia, 175 (1989) 109.
  • Helliävaara K., Väisänen R., Kemppi E., Change in pupal size of Panalis flammea and Bupalus piniarius in response to concentration of industrial pollutants in their food plant. Oecologia, 79 (1989) 179.
  • Cohn J., Widzowski, DV., Cory-Slecthta, DA., Lead retards development of Drosophila melanogaster. Comp. Biochem. Physiol., 102 (1) (1992) 45.
  • Timmermans KR., Walker PA., The fate of trace metals during the metamorphosis of Chironomids (Diptera, Chironomidae), Environ. Pollut., 62 (1989) 73.
  • Conrad G.W., Heavy metals effects on cellular shape changes, cleavage and larval develoment of the marine gastropod mollusc (Ilyanassa obsoleta Say), Bull. Environ. Contam. Toxicol., 41 (1988) 79.
  • Uysal H., Bahçeci Z., Kurşun nitratın Drosophila melanogaster’ in gelişimi üzerine etkileri, Turk. J. Biol., 21 (1997) 1.
  • Uysal H., Bahçeci Z., Kurşun nitratın Drosophila melanogaster’ in üçüncü instar larvalarının tükrük bezi politen kromozomları üzerine etkileri, Turk. J. Biol., 20 (1996) 199.