NİKEL ESASLI SÜPERALAŞIMLARIN VE TİTANYUM ALAŞIMLARININ İŞLENEBİLİRLİĞİ 1. BÖLÜM: SİNTERLENMİŞ KARBÜR TAKIMLARIN PERFORMANSLARININ DEĞERLENDİRİLMESİ

Nikel esaslı süperalaşımlar ile titanyum ve alaşımları gibi gelişmiş malzemeler yüksek ısıl direnç, sertlik ve aşınma dayanımı gibi özelliklerin birleşimi nedeniyle talaş kaldırma sırasında kesici takım malzemelerine ciddi güçlükler doğurmaktadır. Süperalaşımların düşük işlenebilirlik özellikleri kesici takım malzemeleri üzerinde plastik deformasyona ve hızla artan takım aşınmalarına yol açan kesme kenarına yakın oldukça yüksek termal ve mekanik gerilmelerin oluşmasına neden olmaktadır. Nikel esaslı süperalaşımların ve titanyum alaşımlarının işlenmesinde tipik aşınma tipleri burunda ve/veya talaş derinliği çizgisine yakın çentik, serbest yüzey aşınması, krater aşınması, çıtlama ve ani takım kırılmalarıdır. Geliştirilmiş sertlikleri ile kaplamasız ve kaplamalı sinterlenmiş karbürler, seramikler ve kübik bor nitrürler (CBN) bu süperalaşımların işlenmesinde oldukça sık kullanılmaktadır. CBN ve seramik takımlar genellikle yüksek hızlardaki sürekli kesme işlemlerinde kullanılmaktadır. Diğer taraftan sinterlenmiş karbür takımlar da nikel esaslı süperalaşımların ve titanyum alaşımlarının işlenmesinde yaygın olarak kullanılmaktadır. Kaplamasız ve kaplamalı olmak üzere iki karbür kesici takım kategorisi bu süperalaşımların ticari işleme uygulamalarında kullanılmaktadır.Bu çalışmada, son yıllardaki çalışmalar ve nikel esaslı süperalaşımların ve titanyum alaşımlarının işlenebilirliği ile ilgili gelişmeler sunulmuştur. Bu süperalaşımların işlenmesinde farklı kesme yöntemleri, soğutma uygulamaları, kesme kuvvetleri ve sinterlenmiş karbür takımların takım ömrü ve takım aşınma davranışları değerlendirilmiştir.

MACHINABILITY OF NICKEL-BASED SUPERALLOYS AND TITANIUM ALLOYS PART 1: EVALUATION OF CEMENTED CARBIDE TOOLS’ PERFORMANCES

Advanced materials such as nickel based super alloys, titanium and its alloys provide serious challenge for cutting tool materials during machining due to their combinations of properties such as high thermal resistance, hardness and wear resistance. The poor machinability of superalloys subject cutting tool materials to extreme thermal and mechanical stress close to the cutting edge often leading to plastic deformation and accelerated tool wear. Typical failure modes when machining nickel based superalloys and titanium alloys are notching at the nose and/or depth of cut line, flank wear, crater wear, chipping and catastrophic tool failure. Tool materials with improved hardness like uncoated and coated cemented carbides, ceramics and cubic boron nitrides (CBN) are the most frequently used for machining these superalloys. CBN and ceramic tools are generally preferred for high speed continuously machining as smoot cut. On the other hand, cemented carbide tools are still largely used for machining the nickel based superalloys and titanium alloys. Two categories of carbide cutting tool are available for commercial machining application of these superalloys; uncoated and coated carbide tools.In this study, recent works and advances concerning machining of nickel based superalloys and titanium alloys with carbide tools are presented. Different cutting methods, coolant applications, cutting forces and tool life and tool wear of cemented carbide tools are evaluated in the machining of these superalloys.

___

  • Tungaloy, Product Selection Guide No. 204, Products for Machining High Temp Alloy Materials, Tungaloy
  • Inc., America, http://www.tungaloyamerica.com/pdf/High%20Temp%20web.pdf
  • Ezugwu E.O., Improvements in The Machining of Aero-engine Alloys Using Self-propelled Rotary Tooling Technique, Journal of Materials Processing Technology, 185, 60–71, 2007.
  • Jawaid A., et al., Cutting Performance and Wear Characteristics of PVD Coated and Uncoated Carbide Tools In Face Milling Inconel 718 Aerospace Alloy, Journal of Processing Technology, 116, 2-9, 2001.
  • Darwish S.M., Machining of Difficult-to-Cut Materials with Bonded Tools, International Journal of Adhesion and Adhesives, 20, 279-289, 2000.
  • Ezugwu E.O., Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys, International Journal of Machine Tools and Manufacture, 45, 1353–1367, 2005.
  • Liu G., et al., Experimental Studies on Machinability of Six Kinds of Nickel-Based Superalloys, International Journal of Machining and Machinability of Materials, 1 (3), 287-300, 2006.
  • Ezugwu E.O., et al., An Overview of The Machinability of Aero-engine Alloys, Journal of Materials Processing Technology, 134, 233-253, 2003.
  • Alauddin M.A., et al., End Milling Machinability of Inconel 718, Journal of Engineering Manufacture, 210, 11- 23, 1996.
  • Chen Y.C. and Liao Y.S., Study on Wear Mechanisms in Drilling of Inconel 718 Superalloy, Journal of Materials Processing Technology, 140, 269–273, 2003.
  • Ezugwu E.O. and Wang Z.M., Wear of Coated Carbide Tools When Machining Nickel (Inconel 718) and Titanium Base (Ti–6Al–4V) Alloys, Tribol. Trans., 43, 263–268, 2000.
  • Zhao S., et al., Microstructural Stability and Mechanical Properties of A New Nickel-Based Superalloy, Materials and Engineering A, 355, 96-105, 2003.
  • Subhas B.K., et al., Dimensional Instability Studies in Machining of Inconel 718 Nickel Based Superalloy as Applied to Aerogas Turbine Components, J. Eng. Gas Turbines Power, 122 (1), 55-61, 2000.
  • Choudhury I.A. and El-Baradie M.A., Machinability of Nickel Base Superalloy: A General Review, Journal of Materials Processing Technology, 77 (1-3), 278-284, 1998.
  • Ribeiro M.V. et al., Optimization of Titanium Alloy (6Al-4V) Machining, Journal of Materials Processing Technology, 143-144, 458-463, 2003.
  • Ensarioğlu C. ve Çakır M.C., Titanyum ve Alaşımlarının İşlenebilirlik Etüdü- Bölüm 1, Mühendis ve Makine, 46 (546), 36-46, 2005.
  • Zoya Z.A. and Krishnamurthy R., The Performance of CBN Tools in The Machining of Titanium Alloys,
  • Erdem M.S. ve Akmandor İ.S., Uçak Motoru ve Elektrojen Gruplarındaki Gaz Türbini Teknolojisindeki İlerlemeler, Malzeme, Yüzey Teknolojileri ve İmalat Süreçlerindeki Gelişmeler (Bölüm 1), Mühendis ve Makine, 528, 1-6, 2004.
  • Ezugwu E.O., et al., The Machinability of Nickel-Based Alloys: A Review, Journal of Materials Processing Technology, 86, 1-16, 1999.
  • Obikawa T., et al., Micro-liter Lubrication Machining on Inconel 718, International Journal of Machine Tools and Manufacturing, 48, 1605-1612, 2008.
  • Sharman A.R.C., et al., Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718 Nickel Based Superalloy, Machining Science and Technology, 8 (3), 399–414, 2004.
  • Ezugwu E.O., High Speed Machining of Aero-Engine Alloys, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26 (1) 1-8, 2004.
  • Ducros C., et al., Deposition, Characterization and Machining Performance of Multilayer PVD Coatings on Cemented Carbide Cutting Tools, Surface and Coatings Technology, 163 –164, 681–688, 2003.
  • Ezugwu E.O. and Okeke, C.I. Effects of Coating Materials on the Machinability of a Nickel Base, C-263, Alloy, Tribology Transactions, 43 (3), 549 – 553, 2000.
  • Bikramjit Podder S.P., Effect of Machining Environment on Machinability of Nimonic 263 During End Milling with Uncoated Carbide Tool, International Journal of Machining and Machinability of Materials, 3 (1,2), 104 – 119.
  • Altın A., et al., The Effects of Cutting Speed on Tool Wear and Tool Life when Machining Inconel 718 with Ceramic Tools, Materials and Design, 28, 2518–2522, 2007.
  • Altın A. et al., İşleme Parametrelerinden Kesme Hızının Inconel 718 Süper Alaşımın İşlenebilirliğine Etkisi, J. Fac. Eng. Arch. Gazi Univ. 21 (3), 581-586, 2006.
  • Ezugwu E.O. and Pashby, I.R., High Speed Milling of Nickel-Based Superalloys, Journal of Materials Processing Technology, 3, 429-437, 1992.
  • Choudhury I.A. and El-Baradie M. A, Machining Nickel Base Superalloys: Inconel 718, Proceedings of the I MECH E Part B Journal of Engineering Manufacture, 212 (3), 195-206, 1998.
  • Krain H.R., et al., Optimization of Tool Life and Productivity When End Milling Inconel 718TM, Journal of Processing Technology, 189, 153-161, 2007.
  • Macginley T. and Monaghan J., Modeling The Orthogonal Machining Process Using Coated Cemented Carbide Cutting Tools, Journal of Materials Processing Technology, 118, 293-300, 2001.
  • Devillez A., et al., Cutting Forces and Wear in Dry Machining of Inconel 718 with Coated Carbide Tools, Wear, 262, 931–942, 2007.
  • Kamata Y. and Obikawa T., High Speed MQL Finish-Turning of Inconel 718 with Different Coated Tools, Journal of Materials Processing Technology, 192–193, 281–286, 2007.
  • Li H.Z. et al., An Experimental Study of Tool Wear and Cutting Force Variation in The End Milling of Inconel 718 with Coated Carbide Inserts, Journal of Materials Processing Technology, 180, 296–304, 2006.
  • Guimu Z., et al., Experimental Study on The Milling of Thin Parts of Titanium Alloy (TC4), Journal of Materials Processing Technology, 138, 489–493, 2003.
  • Aspinwall D.K., et al., The Influence of Cutter Orientation and Workpiece Angle on Machinability when High- Speed Milling Inconel 718 Under Finishing Conditions, International Journal of Machine Tools and Manufacture, 47, 1839–1846, 2007.
  • Liao Y.S., et al., Behaviors of End Milling Inconel 718 Superalloy by Cemented Carbide Tools, Journal of Materials Processing Technology, 201, 460–465, 2008.
  • Jawaid A., et al., Tool Wear Characteristics in Turning of Titanium Alloy Ti-6246, Journal of Materials Processing Technology, 92-93, 329-334, 1999.
  • Calamaz M., et al., Damage Modes of Straight Tungsten Carbide in Dry Machining of Titanium Alloy TA6V, 8th International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading J. Phys. IV, France, 1265-1271, 2006.
  • Ken'ichi H., et al., Adaptive Controlled Machining of Titanium Alloy-Decision of Cutting Condition Under Constraint of Cutting Temperature, Report of the Industrial Research Institute of Ishikawa, 48, 9-14, 1999.
  • Jianxin D., et al., Diffusion Wear in Dry Cutting of Ti–6Al–4V with WC/Co Carbide Tools, Wear, 265 (11-12), 1776-1783, 2008.
  • Dearnly P.A. and Grearson, A.N., Evaluation of Principal Wear Mechanisms of Cemented Carbides and Ceramics Used for Machining Titanium Alloy IMI 318, Materials Science Technology, 2, 47-58, 1986.
  • Amin A.K.M.N., et al., Effectiveness of Uncoated WC–Co and PCD Inserts in End Milling of Titanium Alloy— Ti–6Al–4V, Journal of Materials Processing Technology, 192–193, 147-158, 2007.
  • Venugopal K.A., et al., Growth of Tool Wear in Turning of Ti-6Al-4V Alloy Under Cryogenic Cooling, Wear, 262, 1071-1078, 2007.
  • Venugopal K.A., et al., Tool Wear in Cryogenic Turning of Ti-6Al-4V Alloy, Cryogenics, 47, 12–18, 2007.
  • Chonghai X., et al., Research and Development of Rare-Earth Cemented Carbides, Int. J. Refractory Met. Hard Mater., 19, 159-168, 2001.
  • Hua J. and Shivpuri R., A Cobalt Diffusion Based Model for Predicting Crater Wear of Carbide Tools in Machining Titanium Alloys, J. Eng. Mater. Technol., 127 (1), 136-144, 2005.
  • Lopez L.N., et al., Advanced Cutting Conditions for The Milling of Aeronautical Alloys, Journal of Processing Technology, 100, 1-11, 2000.
  • Venugopal K.A., Turning of Titanium Alloy with Tib2-Coated Carbides Under Cryogenic Cooling, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217 (12), 1697-1707, 2003.
  • Elmagrabi N., et al., High Speed Milling of Ti-6Al-4V Using Coated Carbide Tools, European Journal of Scientific Research, 22 (2), 153-162, 2008.
  • İbrahim G.A, et al., The Effect of Dry Machining on Surface Integrity of Titanium Alloy Ti-6Al-4V ELI, Journal of Applied Science, 9 (1), 121-127, 2009.
  • Jawaid A., et al., Evaluation of Wear Mechanisms of Coated Carbide Tools When Face Milling Titanium Alloy,
  • Fitzsimmons S.V.K., Development of CVD WC-Co Coatings, Surface Coating Technology, 137, 158-163, 2001.
  • Ezugwu E.O. and Wang Z.M., Tool Life and Workpiece Surface Integrity Evaluation when Machining Ti6Al4V with PVD Coated Tools, Surf. Modif. Technol., IOM, 10, 414-426, 2002.
  • Li R., et al., High-Throughput Drilling of Titanium Alloys, International Journal of Machine Tools and Manufacture, 47, 63-74, 2007.
  • Sharif S. and Rahim E.A., Performance of Coated and Uncoated-Carbide Tools when Drilling Titanium Alloy- Ti–6Al4V, Journal of Materials Processing Technology, 185, 72-76, 2007.
  • Nabhani F., Wear Mechanisms of Ultra-Hard Cutting Tools Materials, Journal of Materials Processing Technology, 115 (3), 402-412, 2001.
  • Nabhani F., Machining of Aerospace Titanium Alloys, Robotics and Computer Integrated Manufacturing, 17(1- 2), 99-106, 2001.
  • Nouari M. and Ginting A., Wear Characteristics and Performance of Multi-Layer CVD-Coated Alloyed Carbide Tool in Dry End Milling of Titanium Alloy, Surface and Coatings Technology, 200, 5663–5676, 2006.
  • Ginting A. and Nouari M., Experimental and Numerical Studies on The Performance of Alloyed Carbide Tool in Dry Milling of Aerospace Material, International Journal of Machine Tools and Manufacture, 46, 758–768, 2006.
  • Haron C.H.C., et al., Performance of Alloyed Uncoated and CVD-Coated Carbide Tools in Dry Milling of Titanium Alloy Ti-6242S, Journal of Materials Processing Technology, 185, 77–82, 2007.
  • Ginting A. and Nouari M., Optimal Cutting Conditions when Dry End Milling The Aeroengine Material Ti– 6242S, Journal of Materials Processing Technology, 184,319–324, 2007.