Kuzu Marulu (Valerianella locusta (L.) Laterr) Yetiştiriciliğinde Besin Solüsyonuna Silisyum İlavesinin Tuz Stresine Karşı Etkileri

Teknelerde, havalandırmalı besin solüsyonu üzerine yerleştirilen köpük viyollerde yürütülen bu çalışmada, kuzu marulu yetiştiriciliğinde besin solüsyonuna silisyum (Si) ilavesinin tuz stresine karşı bitki gelişimi, verim ve kalite üzerine etkilerini belirlemek amaçlanmıştır.  Kuzu marulu tohumları 72’lik viyolde torf ortamına ekilmiş; çimlenme odasında 3 gün çimlendirilen tohumlar fide serasına alınmış, gerçek yapraklar çıkmaya başladığında serada su kültürüne aktarılmış, bundan 7 gün sonrada besin solüsyonuna tuz ve silisyum uygulanmıştır. Bitkilerin beslenmesinde marul reçetesi kullanılmıştır. Bitkiler iki farklı besin solüsyonu tuzluluk seviyesinde [1.8 dS/m (0 mM): Kontrol ve 3.6 dS/m (20 mM): Tuzlu] yetiştirilmiş ve solüsyona ilave edilen 100 ppm silisyum (K2SiO3) uygulaması (Si+), silisyumsuz (Si-) uygulama ile kıyaslanmıştır. Su kültüründe aktarıldıktan 1 ay sonra hasat olgunluğuna gelen bitkilerde bitki gelişim ölçümleri yapılmış ve ardından tek seferde hasatları yapılarak verim değerleri alınmıştır. Elde edilen veriler, besin solüsyonuna tuz ilavesinin bitki boyu, yeşil aksam yaş ve kuru ağırlığı, verim, nitrat ve su tüketimini azalttığını; kök boyu ve kök biyomasını arttırdığını göstermiştir. Özellikle tuz stresi altında besin solüsyonuna silisyum ilavesi tuz stresinin olumsuz etkisini gidermiştir. Araştırma sonucunda, silisyumun tuz stresini azaltmada pratik ve alternatif bir uygulama olabildiği sonucuna varılmıştır.

___

  • [1] Çulha, Ş., Çakırlar, H. 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Universitesi Fen Bilimleri Dergisi, 11(2), 11-34.
  • [2] Levitt, J. 1980. Responses of Plants to Environmental Stresses. Vol.II. Academic Pres, New York, 607 p.
  • [3] Yılmaz, E., Tuna, A.L., Bürün, B., 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayer Üniversitesi Fen Bilimleri Dergisi, 7 (1): 47–66.
  • [4] Sevgican, A., 2002. Örtüaltı Sebzeciliği (Topraksız Tarım). Cilt II. Ege Üniv. Ziraat Fakültesi Yayınları. Bornova, İzmir.
  • [5] Sönmez, İ., Kaplan, M. 2004. Demre Yöresi Seralarında Toprak ve Sulama Sularının Tuz İçeriğinin Belirlenmesi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 17(2): 155-160.
  • [6] Anaç, D., Eryüce, N. 2003. Nutrient Management in Protected Cropping in Turkey. Nutrient, Substrate and Water Management in Protected Cropping Systems. The 2003 Dahlia Greidinger Symposium (7-10 December 2003). Ege University, İzmir-Turkey.
  • [7] Sonnoveld, C., Baas, R., Nijsen, H.M.C., De Hoog, J. 1999. Salt Tolerance of Flower Crops Grown in Soilless Culture. Journal of Plant Nutrition, 22:1033-1048.
  • [8] Li, Y.L. 2000. Analysis of Greenhouse Tomato Production in Relation to Salinity and Shoot Environment. PhD thesis. Insititute of Agricultural and Environmental Engineering (IMAG), Wageningen.
  • [9] Yılmaz, S. Fırat, A.F., Zengin, S., Çelik, İ., Aktaş, A., Tekşam, İ., Arı, N., Devran, Z., Ünlü, A., Göçmen, M., Öztop, A., Baysal, Ö., Sayın, Ö., Çelikyurt, M.A., Kaya, N. 2008. Sera Domates Üretiminde İyi Tarım Uygulamaları. BATEM-Batı Akdeniz Tarımsal Araştırma Enstitüsü, Antalya-Turkey. 111 p.
  • [10] Öztekin, G.B. 2009. Aşılı Domates Bitkilerinde Tuz Stresine Karşı Anaçların Etkisi. Doktora Tezi. Ege Üniversitesi, Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Bornova, İzmir-Turkey, 342 s.
  • [11] Adams, P., Ho, L.C. 1989. Effect of Constant and Fluctuating Salinity on The Yield, Quality and Calcium Status of Tomatoes. Journal of Horticultural Science and Biotechnology, 64(6): 725-732.
  • [12] Navarro, M.J., Martinez, V., Carvajal, M. 2000. Amonium, Bicarbonate and Calsium Effects on Tomato Plants Grown under Saline Conditions. Plant Science, 157:89-96.
  • [13] Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50:641-644.
  • [14] Romero-Aranda, R.M, Jurado, O., Cuartero, J. 2006. Silicon Alleviates the Deleterious Salt Effect on Tomato Plant Growth By Improving Plantwater Status. Journal of Plant Physiology, 163:847-855.
  • [15] Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M., Patakioutas, G. 2009. Silicon Supply in Soilless Cultivations of Zucchini Alleviates Stress Induced by Salinity and Powdery Mildew Infections. Environmental and Experimental Botany, 65:11–17.
  • [16] Öztekin, G.B., Tüzel, Y., Tüzel, İ.H., Tepecik, M. 2018. Effects of Silicon on Tomato Grown in Substrate Culture Under Salinity Stress. Fresenius Environmental Bultein, 27: 5520-5530.
  • [17] Epstein, E. 1994. The Anomaly of Silicon in Plant Biology. Proceedings of the National Academy of Sciences-USA, 91:11-17.
  • [18] Liang, Y.C., Sun, W., Zhu, Y.G., Christie, P. 2007. Mechanisms of Silicon Mediated Alleviation of Abiotic Stress in Higher Plants: A Review. Environmental Pollution, 147:422-428.
  • [19] Meunier, J. 2003. The Role of Plants in The Transfer of Silicon From Theplant Surface into the Cytosol. Comptes Rendus Geoscience, 335:1199-1206.
  • [20] Werner, D., Roth, R. 1983. Silica Metabolism. In Ancyclopedia of Plant Physiology, New Series. Eds. A. Lauchli and R.L. Bieleski, SpringerVerlag, New York. p. 682-694.
  • [21] Morgan, L. 2000. Beneficial Elements for Hydroponics: A New Look at Plant Nutrition. Growing Edge 11(3): 40-581.[22] Jones, B. J. 2014. Complete Guide for Growing Plants Hydroponically. CRC Press, pp 203.
  • [23] Menzies, J.G., Belanger, R.R. 1996. Recent Advances in Cultural Management of Diseases of Greenhouse Crops. Canadian Journal of Plant Pathology, 18:186-193.
  • [24] Savant, N.K., Snyder, G.H., Datnoff, L.E. 1997. Silicon Management and Sustainable Rice Production. Advances in Agronomy, San Diego, CA, USA58:151-199.
  • [25] Ma, J.F., Takahashi, E. 2002. Soil, Fertilizer and Plant Silicon Research in Japan. Elsevier Science, Amsterdam.
  • [26] Aranda, M.R.R., Oliva, J., Cuartero, J. 2005. Silicon Alleviates the Deleterious Salt Effect on Tomato Plant Growth by Improving Plant Water Status. Journal of Plant Physiology, 5:10.
  • [27] Gong, H., Chen, G., Chen, G., Wang, S., Zhang, C. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots Under Drought. Plant Science, 169:313–321.
  • [28] Barcelo, J., Guevara, P., Poschenrieder, C. 1993. Silicon amelioration of Aluminum Toxicity in Teosinte (Zea mays L. Spp. Mexicana). Plant Soil, 154:249-255.
  • [29] Öztekin, G.B., Tüzel, Y., Tüzel, İ.H. 2017. Sera Topraksız Domates Yetiştiriciliğinde Silisyumun Tuz Stresine Etkisi. Akademik Ziraat Dergisi, 6 (Özel sayı):243-256.
  • [30] Lee, D.B., Kwon, T.O., Park, K.H., 1990. Influence of Nitrogen and Silica on the Yield and the Lodging Related Traits of Paddy Rice. Research Reports of the Rural Development Administration, Soil & Fertilizer, 32(2):12-23.
  • [31] Horiguchi, T. 1988. Mechanism of Manganese Toxicity and Tolerance Of Plants. IV. Effect of Silicon on Alleviation of Manganese Toxicity of Rice Plants. Soil Science and Plant Nutrition, 34:63-73.
  • [32] Ali, A., Basra, S.M.A., Iqbal, J., Hussain, S., Subhani, M.N., Sarwar, M., Ahmed, M. 2012. Augmenting the Salt Tolerance in Wheat (Triticum aestivum) through Exogenously Applied Silicon. African Journal of Biotechnology, 11(3):642-649.
  • [33] Cherif, M., Benhamou, N., Menzies, J.G., Belanger, R.R. 1992. Studies of Silicon Distribution in Wounded and Pythium ultimum Infected Cucumber Plants. Physiological and Molecular Plant Pathology, 41:371-385.
  • [34] Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J. 2004. Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt-Stressed Cucumber (Cucumis sativusL.). Plant Science, 167(3):527-533.
  • [35] Cetinsoy, M.F., Dasgan, H.Y. 2016. The Effects of Foliar Spraying of Selenium and Silicon on Cucumber Plants. Nevşehir Bilim ve Teknoloji Dergisi, TARGİD Özel Sayı:243-252.
  • [36] Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Römheld, V., Mimmo, T., Scampicchio, M., Dalla Costa, L., Cesco, S. 2012. Beneficial Effects of Silicon on Hydroponically Grown Corn Salad (Valerianella locusta (L.) Laterr) Plants. Plant Physiology and Biochemistry, 56: 14-23.
  • [37] Self Nutrition Data, 2019. https://nutritiondata.self.com/facts/vegetables-and-vegetable-products/2426/2 (Erişim Tarihi: 03.09.2019)
  • [38] Gül, A., 2008, Topraksız Tarım. ISBN:978-975-8377-66-4, Hasad yayıncılık, İstanbul, 144 s.
  • [39] McGuire, G. R.,1992. Reporting of Objective Color Measurements. HortScience, 27 (12):1254-1255.
  • [40] Cataldo, D.A., Haaron, M., Schrader, L.F., Youngs, V.L. 1975. Rapid Colormetric Determination of Nitrate in Plant-Tissue By Nitration of Salicylic-Acid. Communications in Soil Science and Plant Analysis, 6:71-80.
  • [41] Pearson, D. 1970. The Chemical Analysis of Foods (6th edn). Chemical Publishing Co Inc, New York, USA.
  • [42] Perez Alfocea, F., Estan, M. T., Caro, M., Bolarin, M.C. 1993. Response of Tomato Cultivars to Salinity. Plant and Soil, 150:203-211.
  • [43] Al-Karaki, G.N. 2000. Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown under Salt Stres. Journal of Plant Nutrition, 23(1):1-8.
  • [44] Bolarin, M. C., Estan, M. T., Caro, M., Romero-Cayuela, E., Estan, M. T., Parra, M., Caro, M., Bolarin, M. C. 2001. NaCl Pre-treatment at the Seedling Stage Enhances Fruit Yield of Tomato Plants Irrigated with Salt Water. Plant and Soil, 230:231-238.
  • [45] Santa-Curz, A., Martinez-Rodriguez, M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin C.M. 2002. The Rootstock Effect on the Tomato Salinity Response Depends on the Shoot Genotype. Plant Science, 162:825-831.
  • [46] Schwarz, D., Kuchenbuch, R., Roeber, R. U. 1997. Growth Analysis of Tomato in Close Recirculating System in Relation to the EC Value of the Nutrient Solution. Acta Horticulture, 450:169-176.
  • [47] Tüzel, Y., Tüzel, İ.H., Üçer, F. 2003. Efects of Salinity on Tomato Growing in Substrate Culture. Acta Horticulture, 609:329-335.
  • [48] Wahome, P.K. 2003. Mechanisms of Salt (NaCl) Stress Tolerance in Horticultural Crops - A Mini Review. Acta Horticulture, 609:127-131.
  • [49] Munns, R., Termaat, A. 1986. Whole Plant Responses to Salinity. Australian Journal of Plant Physiology, 13:143-160.
  • [50] Pasternak, D. 1987. Salt Tolerance and Crop Production-A Comprehensive Approach. Annual Review of Phytopathology, 25:271-291.
  • [51] Shannon, M.C., Grieve, C.M. 1999. Tolerance of Vegetable Crops to Salinity. Scientia Horticulturae, 78:5-38.
  • [52] Anderson, D.L., Synder, G.H., Martin, F.G. 1991. Multi Year Response of Sugarcane to Calcium Silicate Slag on Everglades Histosols. Agronomy Journal, 83:870-874.
  • [53] Gong, H., Chen, G., Chen, G., Wang, S., Zhang, C. 2003. Effects of Silicon on Growth of Wheat under Drought. Journal of Plant Nutrition, 26:1055–1063.
  • [54] Liang, Y.C., Zhang, W.H., Chen, Q., Ding, R. 2005. Effects of Silicon on H+-ATPase and H+-P Pase Activity, Fatty Acid Composition and Fluidity of Tonoplast Vesicles from Roots of Salt-Stressed Barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53:29–37.
  • [55] Qian, Q. Q., Zai, W.S., Zhu, Z.J, Yu, J.Q. 2006. Effects of Exogenous Silicon on Active Oxygen Scavenging Systems in Chloroplastsof Cucumber (Cucumis sativus L.) Seedlings under Salt Stress. Journal of Plant Physiology and Molecular Biology, 32:107- 112.
  • [56] Manzocco, L., Foschia, M., Tomasi, N., Maifreni, M., Dalla Costa, L., Marino, M., Cortella, G., Cesco, S., 2011. Influence of Hydroponic and Soil Cultivation on Quality and Shelf Life of Ready-to-eat Lamb’s Lettuce (Valerianella locusta L. Laterr). Journal of the Science of Food and Agriculture, 91: 1373–1380.
  • [57] Fernandez, J.A., Niñirola, D., Ochoa, J., Orsini, F., Pennisi, G., Gianquinto, G., Egea-Gilabert, C. 2016. Root Adaptation and Ion Selectivity Affects the Nutritional Value of Salt-Stressed Hydroponically Grown Baby-Leaf Nasturtium officinale and Lactuca sativa. Agricultural and Food Science, 25:230-239.
  • [58] Borghesi, E., Carmassi, G., Uguccioni, M.C., Vernieri, P., Malorgio, F., 2013. Effects of Calcium and Salinity Stress on Quality of Lettuce in Soilless Culture. Journal of Plant Nutrition, 36:677-690.
  • [59] Tomasi, N., Pinton, R., Costa, L.D., Cortella, G., Terzano, R., Mimmo, T., Scampicchio, M., Cesco, S. 2015. New ‘Solutions’ for Floating Cultivation System of Ready-to-Eat Salad: A review. Trends in Food Science and Technology, 46: 267-276.
  • [60] Conklin, P.L. 2004. Ascorbic Acid: An Essential Micronutrient Provided by Plants. Encyclopedia of Plant and Crop Science. Mercel Dekker.
  • [61] Eşiyok, D., Ongun, A.R., Bozokalfa, M.K., Tepecik, M., Okur, B., Kaygısız, T. 2006. Organik Roka Yetiştiriciliği. Sebze Tarımı Sempozyumu Bildiri Kitabı. 85-89, Kahramanmaraş-Türkiye.
  • [62] Munzuroğlu, Ö., Karataş, F., Gür, N. 2000. Işgın (Rheum ribes L.) Bitkisindeki A, E ve C Vitaminleri ile Selenyum Düzeylerinin Araştırılması. Turkish Journal of Biology, 24:397-404.
  • [63] Öztekin, G.B., Tüzel, Y., Tüzel, İ.H. 2014. Sera Topraksız Domates Yetiştiriciliğinde Silisyumun Tuz Stresine Etkisi. Ege Üniversitesi Ziraat Fakültesi Bilimsel Araştırma Projesi, Proje No: 2010-ZRF-001, Bornova/İzmir.
  • [64] Soria, T., Cuartero, J. 1997. Tomato Fruit Yield and Water Consumption with Salty Water İrrigation. Acta Horticulture, 458: 215-220.
  • [65] Yurtseven, E., Kesmez, G. D., Ünlükara, A. 2005. The effects of Water Salinity and Potassium Levels on Yield, Fruit Quality and Water Consumption of a Native Central Anatolian Tomato Species (Lycopercion esculantum). Agricultural Water Management, 78:128-135.
  • [66] Romero-Aranda, R., Soria, T., Cuartero, J. 2000. Tomato Water Uptake and Plant Water Relationships under Saline Growth Conditions. Plant Science, 160:265-272.
  • [67] Fernández-Garcia, N., Cerda, A. and Carjaval, M., 2003. Grafting, a useful technique for improving salinity tolerance of tomatao? Acta Hort., 609: 251-256.
  • [68] Gong, H., Chen, G., Chen, G., Wang, S., Zhang, C. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots under Drought. Plant Science, 169:313–321.
  • [69] Lux, A., Luxova, M., Hattori, T., Inanaga, S., Sugimoto, Y., 2002. Silicification in Sorghum (Sorghum bicolor) Cultivars with Different Drought Tolerance, Physiologia Plantarum, 115:87-92.
  • [70] Hattori, T., Inanaga, S., Araki, H., Morita, S., Luxova, M., Lux, A., 2005. Application of Silicon Enhanced Drought Tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4):459-466.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi