5G Sistemler için kutupsal Kodları Uygulamaları

Kablosuz kanallar üzerinden veri aktarımının iyileştirilmesi yıllar boyunca birçok araştırmacı için problem olmuştur. Bu problemlerden biri kanal kapasitesidir. Shannon teoremi keşfedildiğinden beri Shannon kapasitesine erişmek için çok çalışma yapılmış ancak bu teorik sınıra ulaşmamıştır. Kutupsal kodlar Shannon kapasite sınırına ulaşabilen ilk uygulanabilir kodlardır. 5G sistemlerinde kanal kapasitesindeki artış kutupsal kodların diğer kodlara göre kullanımını daha öne çıkarmıştır. Bu nedenle 5G sistemlerinde kutupsal kod kullanımı çoğu araştırmacının ilgisini çekmektedir. Bu çalışmada Toplamsal Beyaz Gauss Gürültüsü (AWGN), İkili Simetrik Kanal (BSC) ve İkili Silen Kanal (BEC) kanalları üzerinden kutupsal kodların iletimi incelenmiştir. Kutupsal kodların kod çözme işlemi çok farklı yöntemle yapılabilmektedir. Bu çalışmada en yaygın 4 yöntem incelenmiştir. Bu yöntemlerin Blok Hata Oranı BLER’a ve sistemin karmaşıklığına göre karışlaştırması yapılmıştır.

Polar Codes Applications for 5G Systems

Improving data transmission over wireless channels has been the main obsession for many researchers for years. In this paper, we give a clear study of polar codes and channel polarization which produces these codes. Moreover extracting polar codes in three commom channels are studied. These channels are Binary Erasure Channel (BEC), Binary Symmetric Channel (BSC) and Additive White Gaussian Noise (AWGN) channel. Decoding information via polar codes is done by many methods, however we give details about four common methods. Comparing between these methods is done according to system’s complexity, Block Error Rate (BLER). Since Shannon has discovered his theorem of information transmission, a lot of work has been done to attain his limit nevertheless no one has succeeded. Polar codes are the first provably codes that arrive to near Shannon’s limits of capacity therefore they have most of researchers’ interest to be studied in 5G systems.  As 5G systems require significant improvements in channel capacity, polar codes are promising technique that have ability to offer required improvements. In this study, we give details about trial system of 5G encider and decoder with polar codes. 

___

  • Shannon, Claude Elwood. "A mathematical theory of communication." ACM SIGMOBILE Mobile Computing and Communications Review 5.1 (2001): 3-55.
  • Shannon, Claude E. "Coding theorems for a discrete source with a fidelity criterion." IRE Nat. Conv. Rec 4.142-163 (1959): 1.
  • Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  • Sarkis, Gabi. Efficient encoders and decoders for polar codes: Algorithms and implementations. Diss. McGill University Libraries, 2016.
  • Arikan, Erdal. "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels." IEEE Transactions on Information Theory 55.7 (2009): 3051-3073.
  • Süral, Altuğ. An fpga implementation of successive cancellation list decoding for polar codes. Diss. bilkent university, 2016.
  • Alsan, Mine. Channel polarization and polar codes. No. EPFL-REPORT-176515. 2012.
  • Kaur, Navneet, and Arvinder Pal Singh Kalsi. "Implementation of polar codes over AWGN and binary symmetric channel." Indian Journal of Science and Technology 9.19 (2016).
  • Arıkan E. Polar Coding. InIEEE International Symposium on Information Theory 2012 Jun 27.
  • Tal I, Vardy A. List decoding of polar codes. InInformation Theory Proceedings (ISIT), 2011 IEEE International Symposium on 2011 Jul 31 (pp. 1-5). IEEE.
  • Li, Bin, Hui Shen, and David Tse. "An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check." IEEE Communications Letters 16.12 (2012): 2044-2047.
  • Murata, Takumi, and Hideki Ochiai. "On design of CRC codes for polar codes with successive cancellation list decoding." Information Theory (ISIT), 2017 IEEE International Symposium on. IEEE, 2017.
  • Tal I, Vardy A. List decoding of polar codes. IEEE Transactions on Information Theory. 2015 May;61(5):2213-26.
  • Niu, Kai, and Kai Chen. "CRC-aided decoding of polar codes." IEEE Communications Letters 16.10 (2012): 1668-1671.
  • Sarkis, Gabi, et al. "Increasing the speed of polar list decoders." Signal Processing Systems (SiPS), 2014 IEEE Workshop on. IEEE, 2014.
  • Bioglio, Valerio, Carlo Condo, and Ingmar Land. "Design of Polar Codes in 5G New Radio." arXiv preprint arXiv:1804.04389 (2018).
  • Huawei, 5G: New Air Interface and Radio Access Virtualization, 2015, [online] Available: http://www.huawei.com/minisite/has2015/img/5g_radio_whitepaper.pdf
  • Maunder, Robert G. "A Vision for 5G Channel Coding." AccelerComm White Paper (2016).
  • Mhaske, Swapnil, and Predrag Spasojevic. "On Forward Error Correction." IEEE 5G Roadmap Workshop. 2016.
  • R1-164039 “Polar codes - encoding and decoding”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #xx, Nanjing, China, May 23rd - 27th, 2016.
  • Maunder, Robert G. "The 5G channel code contenders." ACCELERCOMM white paper (2016): 1-13.
  • Altera Innovate Asia website, Presentation “1st 5G Algorithm Innovation Competition-ENV1.0-SCMA”, Web: http://www.innovateasia.com/5g/en/gp2.html.
  • Z. Dong, "Up in the air with 5G," Oct. 2016. [Online]. Available: http://www.huawei.com/en/publications/communicate/80/up-in-the-air-with-5g.
  • R1‑167209 “Polar code design and rate matching” , Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #86, Gothenburg, Sweden, August 22 nd - 26 th , 2016.
  • Maunder, Robert G., and AccelerComm CTO. "The implementation challenges of polar codes." (2017).
  • Feng, Wen, Jinhong Yuan, and Branka S. Vucetic. "A code-matched interleaver design for turbo codes." IEEE Transactions on Communications 50.6 (2002): 926-937.