Küçük Bir Kasaba ve Uranyum Madeni Yakınındaki Topraklardaki Jeojenik Radon Gazının Mekansal Dağılımı, Batı Black Hills, Wyoming, ABD

Uranyum, toryum ve potasyumdan kaynaklanan doğal radyasyon, toprak, kaya, bitki, su kütleleri ve hava dahil olmak üzere çeşitli jeolojik ortamlarda bulunur ve yer kabuğuna yaygın olarak dağılmıştır. Uranyum açısından zengin toprak veya kayaçlara sahip bölgeler tipik olarak çok yüksek radon seviyelerine sahiptir ve radon gazının sigara içmeyenler arasında akciğer kanserinin önde gelen nedeni olduğu ve genel olarak akciğer kanserinin en yaygın ikinci nedeni olduğu bilinen bir gerçektir. Bu araştırma, çalışma bölgesinin potansiyel sağlık risklerini belirlemek için küçük bir kasabaya ve Wyoming'deki Black Hills’ların batı kanadında yer alan olası bir uranyum madenine yakın topraklardaki radon gazı konsantrasyonlarının mekansal dağılım haritalarını oluşturmayı amaçlamıştır. Bu çalışma sırasında, Moorcroft, Crook County, Wyoming, Amerika Birleşik Devletleri yakınlarında bulunan yaklaşık 114 km2'lik bir çalışma alanında topraklardaki radon toprak gazı konsantrasyonunun 204 adet yerinde ölçümü yapılmıştır. Radon toprak gazı konsantrasyonlarının ortalaması 53,5 kBq/m3 `tür ve değerler 1,1 kBq/m3 ile 371,3 kBq/m3 arasında değişmiştir. Ayrıca toprak gazı radon konsantrasyonları için mekansal dağılım haritası oluşturulmuştur. Bu haritaya göre, yüksek konsantrasyon değerlerinin Moorcroft kasaba merkezinde ve çalışma alanının güneydoğu ve güneybatı kısımlarında olduğu ortaya çıkmıştır. Çalışma alanının muhtemel uranyum madenine daha yakın olan kuzey kısmı da doğu-batı yönlü yüksek değerler göstermektedir. Çalışma alanı içinde yüksek riskli toprak gazı radon aktivite konsantrasyonlarının varlığı, araştırma alanının kuzey kesiminde roll-front tipi uranyum cevherleşmesinin varlığı ile açıklanabilir. Radon konsantrasyonlarının %40'ı 50 kBq/m3'ü aştığı için bu sahaların bölgede daha yüksek riskli olduğunu göstermiştir.

Spatial Distribution of the Geogenic Radon Gas in Soils Near a Small Town and a Prospective Uranium Mine, Western Black Hills, Wyoming, USA

Natural radiation, which derives from uranium, thorium, and potassium, exists in a variety of geological environments including soils, rocks, plants, water bodies, and air, and is widely distributed in the Earth’s crust. Regions with uranium-rich soil or rock typically have very high radon levels and it is a known fact that radon gas is the leading cause of lung cancer among non-smokers and it ranks as the second most common cause of lung cancer overall. This study aimed to create spatial distribution maps of radon gas concentrations in the soils close to a small town and a prospective uranium mine located in the western flank of the Black Hills uplift, Wyoming, to determine the potential health risks of the area. During this study, 204 in-situ measurements of the radon soil gas concentration in the soil were conducted within a study area of about 114 km2, which is located near Moorcroft, Crook County, Wyoming, United States. The concentrations for radon soil gas ranged from 1.1 kBq/m3 to 371.3 kBq/m3 with an average of 53.5 kBq/m3. In addition, a spatial distribution map was created for the soil gas radon concentrations. Based on this map, elevated concentration values appeared to be in the Moorcroft town center and the southeastern and southwestern portions of the study area. The northern part of the study area, which is closer to the prospective uranium mine, also shows east-west trending elevated values. The presence of the high-risk soil gas radon activity concentrations within the study area can be explained by the presence of the roll front type uranium mineralization in the northern part of the research area. 40% of the sites, with radon levels exceeding 50 kBq/m3, indicated high risk in the region.

___

  • [1] A. K. Mahur, R. Kumar, R. G. Sonkawade, D. Sengupta, and R. Prasad, “Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 266(8), pp. 1591-1597, 2008.
  • [2] J. E. Mielke, “Composition of the Earth's crust and distribution of the elements,” Review of Research on Modern Problems in Geochemistry, v. 1, pp. 13-37, 1979.
  • [3] U.S.G.S., “Uranium,” United States Geologic Survey. Available at: https:// pubs. usgs.gov/of/ 2004/ 1050/uranium.htm (Accessed: March 10, 2023).
  • [4] J. Prussman, “The Radon riddle: Landlord liability for a natural hazard,” BC Envtl. Aff. L. Rev., vol. 18, pp. 715-717, 1990.
  • [5] E.P.A., “Radioactive Decay of uranium,” Environmental Protection Agency. Available at: https://www.epa.gov/radiation/radioactive-decay (Accessed: March 19, 2023).
  • [6] International Agency of Research on Cancer (IARC), “WHO World Health Organization: Evaluation of Carcinogenic Risk to Humans: Man-Made Mineral Fibres and Radon,” IARC Monograph No. 43; IARC: Lyon, France, 1988.
  • [7] L. Vimercati, F. Fucilli, D. Cavone, L. De Maria, F. Birtolo, G. M. Ferri, L. Soleo, and P. Lovreglio, “Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy,” International Journal of Environmental Research and Public Health, vol. 15(4), pp. 694-703, 2008.
  • [8] J. K. Wagoner, V. E. Archer, F. E. Lundin, D. A. Holaday, and J. W. Lloyd, “Radiation as the cause of lung cancer among uranium miners,” New England Journal of Medicine, vol. 273(4), pp. 181-188, 1965.
  • [9] G. Saccomanno, V. E. Archer, O. Auerbach, M. Kuschner, R. P. Saunders, and M. G. Klein, “Histologic types of lung cancer among uranium miners,” Cancer, vol. 27(3), pp. 515-523, 1971.
  • [10] K. Z. Szabó, G. Jordan, A. Horváth, and C. Szabó, “Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary,” Journal of Environmental Radioactivity, vol. 129, pp. 107-120, 2014.
  • [11] M. Kottek, J. Grieser, C. Beck, B. Rudolf and F. Rubel, “World map of the Köppen-Geiger climate classification,” Meteorologische Zeitschrift, vol. 15, pp. 259-263, 2006.
  • [12] G. L. Dolton, and J. E. Fox, “Powder River Basin Province (033)”, D. L. Gautier, G. L. Dolton, K. I. Takahashi, and K. L. Varnes, eds. US Geological Survey Digital Data Series DDS-30, one CD-ROM, Release, 2, 1995.
  • [13] W. H. Craddock, R. M. Drake, J. C. Mars, M. D. Merrill, P. D. Warwick, M. S. Blondes, and C. Lohr, “Geologic Framework for the National Assessment of Carbon Dioxide Storage Resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska,” US Department of the Interior, US Geological Survey, 2012.
  • [14] D. T. Esan, M. K. C. Sridhar, R. Obed, Y. Ajiboye, O. Afolabi, B. Olubodun, and O. M. Oni, “Determination of residential soil gas radon risk indices over the lithological units of a Southwestern Nigeria University,” Scientific Reports, vol. 10(1), p. 7368, 2020.
  • [15] A. K. Hasan, A. R. Subber, and A. R. Shaltakh, “Measurement of radon concentration in soil gas using RAD7 in the environs of Al-Najaf Al-Ashraf City-Iraq,” Advances in Applied Science Research, vol. 2(5), pp. 273-278, 2011.
  • [16] M. Eisenbud, and T. F. Gesell, “Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources,” Academic Press, San Diego, CA, fourth ed.,1997.
  • [17] E. Lara, Z. Rocha, H. E. L. Palmieri, T. O. Santos, F. J. Rios, and A. H. Oliveira, “Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte–RMBH, Brazil,” Radiation Physics and Chemistry, vol. 116, pp. 317-320, 2015.